PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 20 | 2 |

Tytuł artykułu

Large dietary niche overlap of sympatric open-space foraging bats revealed by carbon and nitrogen stable isotopes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Sympatric bats engage in various strategies for dietary niche partitioning such as different microhabitat use; however, no previous study has yet looked at potential dietary niche partitioning in mammals foraging in a space void of any physical structure. Here, we used stable isotope ratios of carbon and nitrogen to investigate if three insectivorous bats of central Thailand, Chaerephon plicatus, Taphozous melanopogon and T. theobaldi, partition food resources when foraging in the open space of the lower boundaries of the troposphere. We quantified the isotopic dietary niches of these species and compared niche dimensions within the guild of openspace foraging bats and between this guild and the edge-foraging bat Hipposideros larvatus. Our results showed that stable isotope ratios of bats differed between wet and dry seasons. Consistently, open-space foraging bat species shared a similar isotopic composition in both seasons, which contrasted that of the edge-space foraging H. larvatus. Isotopic niche dimensions of open-space foraging bats were smaller than those of the edge-space foraging bat. Based on isotopic data, we inferred that open-space foraging bats foraged mostly on dipterans which may fly or drift to higher altitudes where these bats hunt. In contrast, H. larvatus included mostly beetles from C4food webs in their diet, highlighting that this species is an important predator of pest insects of C4crops, namely cane sugar and corn. Our study emphasizes that the unstructured aerosphere in which open-space foraging bats hunt insects may promote a large overlap in the diet of these species. We conclude that mechanisms other than trophic niche differentiation, such as the motion capacity of bat species, both in terms of covered distances and accessed altitudes may facilitate the coexistence of high-altitude foraging bats.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.329-341,fig.,ref.

Twórcy

autor
  • Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
autor
  • Department Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
  • Institute of Biology, Takustrasse 6, 14195 Berlin, Germany
  • Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand

Bibliografia

  • ACHARYA, L., and M. B. FENTON. 1999. Bat attacks and moth defensive behaviour around street lights. Canadian Journal of Zoology, 77: 27–33.
  • ALDRIDGE, H. D. J. N., and I. L. RAUTENBACH. 1987. Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56: 763–778.
  • ALTRINGHAM, J. D. 2011. Bats from evolution to conservation, 2nd edition. Oxford University Press, Oxford, 319 pp.
  • BARCLAY, R. M. R. 1985. Foraging behavior of the African insectivorous bat, Scotophilus leucogaster. Biotropica, 17: 65–70.
  • BARCLAY, R. M. R., and R. M. BRIGHAM. 1991. Prey detection, dietary niche breadth, and body size in bats: why are aerial insectivorous bats so small? American Naturalist, 137: 693–703.
  • BATES, P., S. BUMRUNGSRI, A. SUYANTO, S. MOLUR, and C. SRINI VASULU. 2008. Hipposideros larvatus. The IUCN Red List of Threatened Species 2008: e.T10143A3173793. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T10143A3173793.en.
  • BATES, P., S. BUMRUNGSRI, J. WALSTON, S. MOLUR, and C. SRINI VASULU. 2008. Taphozous theobaldi. The IUCN Red List of Threatened Species 2008: e.T21465A9283242. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T21465A9283242.en.
  • BEN-DAVID, M., and E. A. FLAHERTY. 2012. Stable isotopes in mammalian research: a beginner’s guide. Journal of Mammal ogy, 93: 312–328.
  • BRODERS, H. G., L. J. FARROW, R. N. HEARN, L. M. LAWRENCE, and G. J. FORBES. 2014. Stable isotopes reveal that little brown bats have a broader dietary niche than Northern long-eared bats. 2014. Acta Chiropterologica, 16: 315–325.
  • BOGDANOWICZ, W., M. B. FENTON, and K. DALESZCZYK. 1999. The relationships between echolocation calls, morphology and diet in insectivorous bats. Journal of Zoology (London), 247: 381–393.
  • BONTADINA, F., H. SCHOFIELD, and B. NEAF-DAENZER. 2002. Radio-tracking reveals that lesser horseshoe bats (Rhi nolophus hipposideros) forage in woodland. Journal of Zoology (London), 258: 281–290.
  • BU, Y., M. WANG, C. ZHANG, H. ZHANG, L. ZHAO, H. ZHOU, Y. YU, and H. NIU. 2015. Study of roost selection and habits of a bat, Hipposideros armiger in mainland China. Pakistan Journal of Zoology, 47: 59–69.
  • CAMPBELL, C. J., D. M. NELSON, N. O. OGAWA, Y. CHIKARAISHI, and N. OHKOUCHI. 2017. Trophic position and dietary breadth of bats revealed by nitrogen isotopic composition of amino acids. Scientific Reports, 7: 15932.
  • CASTLE, K. T., T. J. WELLER, P. M. CRYAN, C. D. HEIN, and M. R. SCHIRMACHER. 2015. Using sutures to attach miniature tracking tags to small bats for multimonth movement and behavioral studies. Ecology and Evolution, 5: 2980–2989.
  • CRYAN, P. M., M. A. BOGAN, R. O. RYE, G. P. LANDIS, and C. L.
  • KESTER. 2004. Stable hydrogen isotope analysis of bat hair as evidence for seasonal molt and long-distance migration. Journal of Mammalogy, 85: 995–1001.
  • CRYAN, P. M., C. A. STRICKER, and M. B. WUNDER. 2012. Evidence of cryptic individualspecialization in an opportunistic insectivorous bat. Journal of Mammalogy, 93: 381–389.
  • CSORBA, G., S. BUMRUNGSRI, K. HELGEN, C. FRANCIS, P. BATES, M. GUMAL, D. BALETE, L. HEANEY, S. MOLUR, and C. SRINI VASULU. 2008. Taphozous melanopogon. The IUCN Red List of Threatened Species 2008: e.T21461A9281177. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T21461A9281177.en.
  • DAMMHAHN, M., and S. M. GOODMAN. 2014. Trophic niche dif ferentiation and microhabitat utilization revealed by stable isotope analyses in dry-forest bat assemblage at Ankarana, northern Madagascar. Journal of Tropical Ecology, 30: 97–109.
  • DAMMHAHN, M., C. F. RAKOTONDRAMANANA, and S. M. GOODMAN. 2015. Coexistence of morphologically similar bats (Ves pertilionidae) on Madagascar: stable isotopes reveal fine-grained niche differentiation among cryptic species. Journal of Tropical Ecology, 31: 153–164.
  • DENIRO, M. J., and S. EPSTEIN. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42: 495–506.
  • DENIRO, M. J., and S. EPSTEIN. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 45: 341–351.
  • DENZINGER, A., and H. U. SCHNITZLER.2013. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Frontiers in Physiology, 4(164): 1–15.
  • FRASER, E. E., F. J. LONGSTAFFE, and M. B. FENTON. 2013. Moulting matters: the importance of understanding moulting cycles in bats when using fur for endogenous marker analysis. Canadian Journal of Zoology, 91: 533–544.
  • FUKUI, D., K. OKAZAKI, and K. MAEDA. 2009. Diet of three sympatric insectivorous bat species in Ishigaki island, Japan. Endanger Species Research, 8: 117–128.
  • HICKEY, M. B. C., L. ACHARYA, and S. PENNINGTON. 1996. Resource partitioning by two species of vespertilionid bats (La siurus cinereus and Lasiurus borealis) feeding around street lights. Journal of Mammalogy, 77: 325.
  • HOOPER, E. T., and J. H. BROWN. 1986. Foraging and breeding in two sympatric species of Neotropical bats, genus Noc tilio. Journal of Mammalogy, 49: 310–312.
  • JACKSON, A. L, A. C PARNELL, R. INGER, and S. BEARHOP. 2011. Comparing isotopic niche widths among and within communities: SIBER — Stable Isotope Bayesian Ellipses. R Journal of Animal Ecology, 80: 595–602.
  • JIANG, T., J. FENG, K. SUN, and J. WANG. 2008. Coexistence of two sympatric and morphologically similar bat species Rhi nolophus affinis and Rhinolophus pearsoni. Progress in Natural Science, 18: 523–532.
  • JOHNSON, C. G., L. R. TAYLOR, and T. R. E. SOUTHWOOD. 1962. High altitude migration of Oscinella frit L. (Diptera: Chloro pidae). Journal of Animal Ecology, 31: 373–383.
  • KELLY, J. F. 2000. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology, 78: 1–27.
  • KUNZ, T. H., and M. B. FENTON (eds.). 2003. Bat ecology. University of Chicago Press, Chicago, Illinois, 778 pp.
  • KUNZ, T. H., J. O. WHITAKER, JR., and M. D. WADANOLI. 1995. Dietary energetics of the insectivorous Mexican free-tailed bat (Ta darida brasiliensis) during pregnancy and lactation. Oecologia, 101: 407–415.
  • LAM, M. M. Y., D. M. CREUZBURG, K. O. ROTHHAUPT, K. SAFI, E. YOHANNES and I. SALVARINA. 2013. Tracking diet preferences of bats using stable isotope and fatty acid signatures of faeces. PLoS ONE, 8: e83452.
  • LEELAPAIBUL, W. 2003. The diet and feeding factorsof the wrinkle-lipped free-tailed bat (Tadarida plicata) at KhaoChong-Pran, Ratchaburi Province. M.Sci. Thesis, Kasetsart University, Bangkok, 90 pp.
  • LEELAPAIBUL, W., S. BUMRUNGSRI, and A. PATTANAWIBOON. 2005. Diet of wrinkle-lipped free-tailed bat (Tadarida plicata Buchan nan, 1800) in central Thailand: insectivorous bats potentially act as biological pest control agents. Acta Chiropterologica, 7: 111–119.
  • LEKAGUL, B., and J. A. MCNEELY. 1977. Mammals of Thailand. Association for the Conservation of Wildlife. Kurusapha Ladprao, Bangkok, 758 pp.
  • LI, G., B. LIANG, Y. WANG, H. ZHAO, K. M. HELGEN, L. LIN, G. JONES, and S. ZHANG. 2007. Echolocation calls, diet, and phylogenetic relationships of Stoliczka’s trident bat, Aselliscus stoliczkanus (Hipposideridae). Journal of Mammalogy, 88: 736–744.
  • MCCRACKEN, G. F., E. H. GILLAM, J. K. WESTBROOK, Y. FLEE, M. L. JENSEN, and B. B. BALSLEY. 2008. Brazilian freetailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: links to migratory insect populations. Integrative and Comparative Biology, 48: 107–118.
  • MIŔON, M. L. L., L. G. HERRERA M, N. P. RAMÍREZ, and K. A. HOBSON. 2006. Effect of diet quality on carbon and nitrogen turnover and isotopic discrimination in blood of a New World nectartivorous bat. Journal of Experimental Biology, 209: 541–548.
  • NORBERG, U. M., and J. M. V. RAYNER. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London, 316B: 335–427.
  • PARNELL, A., and A. JACKSON. 2013. siar: Stable Isotope Analysis in R. R package version 4.2. Available from: http://CRAN.R-project.org/package=siar. Accessed 23 March 2014.
  • PAVEY, C. R., C. J. BURWELL, J. GRUNDWALD, C. J. MARSHALL, and G. NEUWEILER. 2001. Dietary benefits of twilight foraging by the insectivorous bat Hipposideros speoris. Biotropica, 33: 670–681.
  • PHILLIPS, D. L., S. D. NEWSOME, and J. W. GREGG. 2005. Combining sources in stable isotope mixing models: alternative methods. Oecologia, 144: 520–527.
  • POPA-LISSEANU, A. G., S. K. SCHADT, J. QUETGLAS, A. D. HUERTAS, D. H. KELM, and C. IBÁÑEZ. 2015. Seasonal variation in stable carbon and nitrogen isotope values of bats reflect environmental baselines. PLoS ONE, 10: e0117052.
  • RAKOTOARIVELO, A. A., N. RANAIVOSON, O. R. RAMILIJAONA, A. F. KOFOKY, P. A. RACEY, and R. B. JENKINS. 2007. Sea sonal food habits of five sympatric forest microchiropterans in western Madagascar. Journal of Mammalogy, 88: 959–966.
  • REX , K., B. I. CZACZKES, R. MICHERNER, and C. C. VOIGT. 2010. Specialization and omnivory in diverse mammalian assemblages. Ecoscience, 17: 37–46.
  • REX, K., R. MICHENER, T. H. KUNZ, and C. C. VOIGT. 2011. Vertical stratification of Neotropical leaf-nosed bats (Chiroptera: Phyllostomidae) revealed by stable carbon isotopes. Journal of Tropical Ecology, 27: 211–222.
  • ROELEKE, M., S. BUMRUNGSRI, and C. C. VOIGT. 2017. Bats probe the aerosphere during landscape-guided altitudinal flights. Mammal Review, 48: 7–11.
  • ROELEKE, M., L., JOHANNSEN, and C. C. VOIGT. 2018. How bats escape the competitive exclusion principle — seasonal shift from intraspecific to interspecific competition drives space use in a bat ensemble. Frontiers in Ecology and Evolution, 6: 101.
  • ROSWAG, A., N. I. BECKER, and J. O. ENCARNACAO. 2018. Isotopic and dietary niches as indicators for resource partitioning in the gleaner bats Myotis bechsteinii, M. nattereri, and Plecotus auritus. Mammalian Biology, 89: 62–70.
  • R CORE TEAM. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at www.r-project.org.
  • SCHNITZLER, H.-U., and E. K. V. KALKO. 2001. Echolocation by insect-eating bats. BioScience, 51: 557–569.
  • SCHOENER, T. W. 1986. Resource partitioning. Pp. 91–126, in Community ecology: pattern and process (J. KIKKAWA and D. J. ANDERSON, eds.). Blackwell, Oxford, 444 pp.
  • SIEMERS, B. M., S. GREIF, I. BORISSOV, S. L. VOIGT-HEUCKE, and C. C. VOIGT. 2011. Divergent trophic levels in two cryptic sibling bat species. Oecologia, 166: 69–78.
  • SOPHIA, E. 2010. Foraging behaviour of the microchiropteran bat, Hipposideros ater on chosen insect pests. Journal of Bio pesticides, 3: 68–73.
  • SRILOPAN, S., S. JANTARIT, and S. BUMRUNGSRI. 2018. The wrinkle-lipped free-tailed bat(Chaerephon plicatus Buchannan, 1800) feeds mainly on brown planthoppers in rice fields of central Thailand. Acta Chiropterologica, 20: 207–220.
  • SRINIVASULU, B., and C. SRINIVASULU. 2005. Diet of the blackbearded tomb bat Taphozous melanopogon Temminck, 1841 (Chiroptera: Emballonuridae) in India. Zoos’ Print Journal, 20: 1935–1938.
  • STOCK, B. C., and B. X. SEMMENS. 2016. MixSIAR GUI User Manual. Version 3.1. Available at https://github.com/brianstock/MixSIAR.
  • SULLIVAN, J. C., K. J. BUSCETTA, R. H. MICHENER, J. O. WHITAKER, J. R. FINNERTY, and T. H. KUNZ. 2006. Models develop from δ13C and δ15N of skin tissue indicate non-specific habitat use by the big brown bat (Eptesicus fuscus). Ecoscience, 13(1): 11–22.
  • TAYLOR, L. R. 1960. Mortality and viability of insect migrants high in the air. Nature, 186: 410.
  • VANDERKLIFT, M. A., and S. PONSARD. 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia, 136: 169–182.
  • VOIGT, C. C., and D. H. KELM. 2006. Host preference of the common vampire bat (Desmodus rotundus; Chiroptera) assessed by stable isotopes. Journal of Mammalogy, 87: 1–6.
  • VOIGT, C. C., and M. W. HOLDERIED. 2012. High manoeuvring costs force narrow-winged molossid bats to forage in open space. Journal of Comparative Physiology, 182B: 415–424.
  • VOIGT, C. C., A. ZUBAID, T. H. KUNZ, and T. KINGSTON. 2011. Sources of assimilated protein in Old and New World Phytophagous bats. Biotropica, 43: 108–113.
  • VOIGT, C. C., B. M. SCHULLER, S. GRIEF, and B. M. SIEMERS. 2010. Perch-hunting in Insectivorous Rhinolophus bats is related to the high energy costs of maneuvering in flight. Journal of Comparative Physiology, 180B: 1079–1088.
  • VOIGT, C. C., F. MATT, R. MICHENER, and T. H. KUNZ. 2003. Low turnover rates of carbon isotopes in tissues of two nectar-feeding bat species. Journal of Experimental Biology, 206: 1419–1427.
  • VOIGT, C. C., O. LINDECKE, S. SCHÖNBORN, S. KRAMERSCHADT., and D. LEHMANN. 2016. Habitat use of migratory bats killed during autumn at wind turbines. Ecological Applications, 26: 771–783.
  • VOIGT, C. C., S. BUMRUNGSRI, and M. ROELEKE. 2019. Rapid descent flight by a molossid bat (Chaerephon plicatus) returning to its cave. Mammalian Biology, 95: 15–17.
  • WARD, E. J., B, X. SEMMENS, D. L. PHILLIPS, J. W. MOORE, and N. BOUWES. 2011. A quantitative approach to combine sources in stable isotope mixing models. Ecosphere, 2(2): 1–11.
  • WETERINGS, R., J. WARDENAAR, S. DUNNZ, and C. UMPONSTIRA. 2015. Dietary analysis of five insectivorous bat species from Kamphaeng Phet, Thailand. Raffles Bulletin of Zoology, 63: 91–96.
  • WILLIAMS, T. C., L. C. IRELAND, and J. M. WILLIAMS. 1973. High altitude flights of the free-tailed bat, Tadarida brasiliensis, observed with radar. Journal of Mammalogy, 14: 807–821.

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-b08d9b7c-00d7-4f69-8125-00ccdd514305
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.