PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 6 |

Tytuł artykułu

Short-term effect of nitrate or water stress on nitrate reduction and malate fermentation pathways in yellow lupine (Lupinus luteus) nodules

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Seven-week-old plants (symbiotic stage) of yellow lupine (Lupinus luteus L. cv. Ventus) were subjected for 8 days to 5 mM nitrate treatment or to drought stress to search for possible activation of bacteroidal nitrate and nitrite reductases. Both treatments affected activities of malate dehydrogenase and aspartate aminotransferase in nodule cytosol and therefore are presumed to impose O₂-limitation to nodule metabolism. However, no significant symptoms of senescence of nodules were found. Both nitrate treatment and drought stress increased rhizobial nitrate and nitrite reductase activities in contrast to noted decrease of corresponding activities in nodule cytoplasm. Differential regulation supports the hypothesis that bacteroidal enzymes can act in dissimilatory mode when nodule respiration is limited due to environmental stresses.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

6

Opis fizyczny

p.1249-1254,fig.,ref.

Twórcy

autor
  • Department of Plant Physiology, Institute of Experimanetal Biology, Adam Mickiewicz University, Al.Niepodleglosci 14, 61-713 Poznan, Poland
  • Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
  • Department of Plant Physiology, Institute of Experimanetal Biology, Adam Mickiewicz University, Al.Niepodleglosci 14, 61-713 Poznan, Poland

Bibliografia

  • Arrese-Igor C, Garcia-Plazaola JI et al (1990) Effect of low nitrate supply to nodulated lucerne on time course of activities of enzymes involved in inorganic nitrogen metabolism. Physiol Plant 80:185–190. doi:10.1111/j.1399-3054.1990.tb04394.x
  • Becana M, Aparicio-Tejo PM et al (1985a) Nitrate and nitrite reduction by alfalfa root nodules: Accumulation of nitrite in Rhizobium meliloti bacteroids and senescence of nodules. Physiol Plant 64:353–358. doi:10.1111/j.1399-3054.1985. tb03352.x
  • Becana M, Aparicio-Tejo PM et al (1985b) Nitrate and nitrite reduction in the plant fraction of alfalfa root nodules. Physiol Plant 65:185–188. doi:10.1111/j.1399-3054.1985.tb02380.x
  • Becana M, Aparicio-Tejo PM et al (1986) Nitrate metabolism in alfalfa root nodules under water stress. J Exp Bot 37:798–806. doi:10.1093/jxb/37.6.798
  • Bergmeyer HU, Bernt E (1974) Glutamate-oxaloacetate transaminase, glutamate-pyruvate transaminase UV assay. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 3, 2nd edn. Academic Press, New York, pp 442–459
  • Chen CL, Sung JM (1983) Effect of water stress on the reduction of nitrate and nitrite by soybean nodules. Plant Physiol 73:1065–1066. doi:10.1104/pp.73.4.1065
  • Diaz del Castillo L, Hunt S et al (1994) The role of oxygen in the regulation of nitrogenase activity in drought-stressed soybean nodules. Plant Physiol 106:949–955
  • Diaz del Castillo L, Layzell DB (1995) Drought stress, permeability to O₂ diffusion, and the respiratory kinetics of soybean root nodules. Plant Physiol 107:1187–1194
  • Garnczarska M, Ratajczak L (1999) Changes in the activity of and isozyme patterns of malate dehydrogenase in root nodules of yellow lupine. Acta Physiol Plant 21:149–153. doi:10.1007/ s11738-999-0069-x
  • Guerin V, Pladys D et al (1991) Proteolysis and nitrogen fixation in faba-bean (Vicia faba) nodules and bacteroids under water stress. Physiol Plant 82:1–7. doi:10.1111/j.1399-3054.1991.tb02918.x
  • Heckman MO, Drevon JJ (1987) Nitrate metabolism in soyeban root nodules. Physiol Plant 69:721–725. doi:10.1111/j.1399-3054. 1987.tb01991.x
  • Heckman MO, Drevon JJ et al (1989) Effect of oxygen and malate on NO₃⁻ inhibition of nitrogenase in soybean nodules. Plant Physiol 90:224–229. doi:10.1104/pp.90.1.224
  • Hunt S, Layzell DB (1993) Gas exchange of legume nodules and the regulation of nitrogenasae activity. Annu Rev Plant Physiol Plant Mol Biol 44:483–511. doi:10.1146/annurev.pp.44.060193. 002411
  • Irigoyen JJ, Emerich DW et al (1992) Phosphoenolpyruvate carboxylase, malate and alcohol dehydrogenase activities in alfalfa (Medicago sativa) nodules under water stress. Physiol Plant 84:61–66. doi:10.1111/j.1399-3054.1992.tb08765.x
  • Kahn ML, McDermott TR et al (1998) Carbon and nitrogen metabolism in rizobia. In: Spaink HP, Kondorosi A, Hooykaas PJJ et al (eds) The Rhizobiaceae. Kluwer Academic Publishers, Dordrecht, pp 461–485
  • Kaur A, Sheoran IS et al (1985) Effect of water stress on the enzymes of nitrogen metabolism in mung bean (Vigna radiata Wilczeck) nodules. Plant Cell Environ 8:195–200
  • Kuzma MM, Winter H et al (1999) The site of oxygen limitation in soybean nodules. Plant Physiol 119:399–408. doi:10.1104/pp.119.2.399
  • Lang P, Martin R et al (1993) Effect of nitrate on carbon metabolism and nitrogen fixation in root nodules of Lupinus albus. Plant Physiol Biochem 31:639–648
  • Layzell DB, Hunt S (1990) Physiological, metabolic and developmental implications of O₂ regulation in legume nodules. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York, pp 21–32
  • Luciński R, Polcyn W et al (2002) Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium—legumes. Acta Biochim Pol 49:537–546
  • Mazurowa H, Ratajczak L (1989) Anaerobic processes in yellow lupin (Lupinus luteus L.) root nodules. Acta Biochim Pol 36:257–262
  • Mazurowa H, Ratajczak L et al (1991) Alcohol dehydrogenase and its relation to respiratory pathways in lupine root nodules. Acta Biochim Pol 38:37–41
  • Millar AH, Day DA et al (1995) Microaerobic respiration and oxidative phosphorylation by soybean nodule mitochondria: implications for nitrogen fixation. Plant Cell Environ 18:715–726. doi:10.1111/j.1365-3040.1995.tb00574.x
  • Minchin FR (1997) Regulation of oxygen diffusion in legume nodules. Soil Biol Biochem 29:881–888. doi:10.1016/S0038-0717(96)00204-0
  • Minchin FR, Minquez MI et al (1986) Relationships between nitrate and oxygen supply in symbiotic nitrogen fixation by white clover. J Exp Bot 37:1103–1113. doi:10.1093/jxb/37.8.1103
  • Minchin FR, Becana M et al (1989) Short-term inhibition of legume N₂ fixation by nitrate. II. Nitrate effect on nodule oxygen diffusion. Planta 180:46–52. doi:10.1007/BF02411409
  • O’Brian MR, Maier RJ (1989) Molecular aspects of the energetics of nitrogen fixation in Rhizobium-legume symbioses. Biochim Biophys Acta 974:229–246. doi:10.1016/S0005-2728(89) 80239-7
  • O’Hara GW, Daniel RM (1985) Rhizobial denitrification, a review. Soil Biol Biochem 17:1–9. doi:10.1016/0038-0717(85)90082-3
  • Pfeiffer NE, Torres CM et al (1983) Proteolytic activity in soybean root nodules. Plant Physiol 71:797–802. doi:10.1104/pp.71.4.797
  • Philippot L, Højberg O (1999) Dissimilatory nitrate reductases in bacteria. Biochim Biophys Acta 1446:1–23
  • Polcyn W (2008) Mass spectrometry identification of membranebound respiratory nitrate reductase from Bradyrhizobium sp. (Lupinus). Acta Biochim Pol 55:753–760
  • Polcyn W, Luciński R (2001) Functional similarities of nitrate reductase from yellow lupine bacteroids to bacterial denitrification systems. J Plant Physiol 158:829–834. doi:10.1078/0176-1617-00271
  • Polcyn W, Luciński R (2003) Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus). FEMS Microbiol Lett 226:331–337. doi:10.1016/ S0378-1097(03)00620-7
  • Polcyn W, Luciński R (2009a) Effect of N oxyanions on anaerobic induction of nitrate reductase in subcellular fractions of Bradyrhizobium sp. Antonie Van Leeuwenhoek 95:159–164. doi: 10.1007/s10482-008-9299-y
  • Polcyn W, Luciński R (2009b) Main centers of nitrate and nitrite reduction in young and nodulated yellow lupine (Lupinus luteus). Acta Physiol Plant 31:605–610. doi:10.1007/s11738-008-0270-3
  • Polcyn W, Podeszwa J (2009) Coordinate induction of dissimilatory ammonification and fermentative pathways in rhizobia. Antonie Van Leeuwenhoek 96:79–87. doi:10.1007/s10482-009-9338-3
  • Preisig O, Zufferey R et al (1996) A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 178:1532–1538
  • Reeves H, Rabin R et al (1971) Malate dehydrogenase. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 6A. Academic Press, New York, pp 451–452
  • Serraj R, Sinclair TR (1996) Inhibition of nitrogenase activity and nodule oxygen permeability by water deficit. J Exp Bot 47:1067–1073. doi:10.1093/jxb/47.8.1067
  • Serraj R, Drevon JJ et al (1992) Variation in nitrate tolerance of nitrogen fixation in soybean (Glicine max)—Bradyrhizobium symbiosis. J Plant Physiol 140:366–371
  • Serraj R, Roy G et al (1994) Salt stress induces a decrease in the oxygen uptake of soybean nodules and in their permeability to oxygen diffusion. Physiol Plant 91:161–168. doi:10.1111/j.1399-3054.1994.tb00414.x
  • Serraj R, Sinclair TR, Purcell LC (1999) Symbiotic N₂ fixation response to drought. J Exp Bot 50:143–155. doi:10.1093/jexbot/50.331.143
  • Streeter JG (1985) Nitrate inhibition of legume growth and activity. I. Long term studies with continuous supply of nitrate. Plant Physiol 77:321–324. doi:10.1104/pp.77.2.321
  • Vessey JK, Waterer J (1992) In search of the mechanism of nitrate inhibition of nitrogenase activity in legume nodules: recent developments. Physiol Plant 84:171–176. doi:10.1111/j.1399-3054.1992.tb08780.x
  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b070fc3e-bc66-4b58-9fea-f1fec945a43b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.