Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 74 | 01 |

Tytuł artykułu

Wpływ lipopolisacharydu (LPS) na aktywność enzymatycznego systemu antyoksydacyjnego erytrocytów i fagocytów karpi w badaniach in vivo

Warianty tytułu

Effect of lipopolysaccharide on the antioxidant enzyme system activity of erythrocytes and phagocytes of carps in in vivo studies

Języki publikacji



The purpose of this experiment was to estimate the activity of antioxidant enzymes (SOD, GPx, CAT) in erythrocytes and phagocytes of carps (Cyprinus carpio L.) after intraperitoneal injection of LPS at a dose of 75 μg/100 g b.w. Enzyme activity was determined 3, 6 and 12 hours, as well as 3, 7, 14 and 28 days after LPS administration. After 3 and 6 hours, SOD in erythrocytes increased, respectively, to 188% and 142% of its control group level, and after 12 hours, SOD activity was significantly reduced (117%) and remained unchanged until the end of the experiment. From 12 hours after LPS administration until the end of the study, the PGx level was statistically significantly lower than in the control group, whereas the catalase activity was statistically significantly lower than in the control group in all study periods. In kidney phagocytic cells, SOD activity after 12 hours and 3 days was similar to that in the control group, and in the following study periods it amounted to 66-78% of the control values. Until the 14th day of observation, PGx activity was statistically significantly lower than it was in the control group. Catalase activity in kidney leukocytes was statistically significantly lower than in the control group during the entire experiment, and the lowest in the first study days, amounting to 48-42% of the control group value. The results indicate a long-term decrease in antioxidant enzyme activities in the experimental fish (lasting 14 or 28 days).








Opis fizyczny



  • Zakład Chorób Ryb i Biologii, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy w Lublinie, ul.Akademicka 12, 20-033 Lublin
  • Zakład Chorób Ryb i Biologii, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy w Lublinie, ul.Akademicka 12, 20-033 Lublin


  • Ahmad M. P., Hussain A., Siddiqui H. H.: Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced – oxidative stress in rats. Pak. J. Pharm. Sci. 2015, 28, 509-513.
  • Ahmad S.: Antioxidant Mechanisms of Enzymes and Proteins, [w:] Ahmad S. (ed.): Oxidative Stress and Antioxidant Defenses in Biology. Chapman and Hall, New York 1995, 238-272.
  • Bai K., Xu W., Zhang J.: Assessment of Free Radical Scavenging Activity of Dimethylglycine Sodium Salt and Its Role in Providing Protection against Lipopolysaccharide – Induced Oxidative Stress in Mice. PloS One 2016, 11.
  • Bainy A. C., Arisi A. C., Azzalis L. A., Simizu K., Barros S. B., Videla L. A., Junqueira V. B.: Differential effect of short-term lindane adminisatration on parameters related to oxidative stress in rat liver and erythrocytes. J. Biochem. Toxicol. 1993, 8, 187-194.
  • Bartosz G.: Druga twarz tlenu. Wolne rodniki w przyrodzie. Wydawnictwo Naukowe PWN. Warszawa 2006.
  • Boivin A., Mesrobeanu I., Mesrobeanu L.: Technique pour la preparation des polysaccharides microbiens specifique. C. R. Soc. Biol. 1933, 113, 490-492.
  • Crack P. J., Taylor J. M.: Reactive oxygen species and the modulation of stroke. Free Radic. Biol. Med. 2005, 38, 1433-1444.
  • Drabkin D. L., Austin J. H.: Spectrophotometric studies: II. Preparations from washed blood cells; nitric oxide hemoglobin and sulfhemoglobin. J. Biol. Chem. 1935, 112, 51-65.
  • Gabryelak T., Klekot J.: The effect of paraquat on the peroxide metabolism enzymes in erythrocytes of freshwater fish species. Comp. Biochem. Physiol. C. 1985, 81, 415-418.
  • Grochoła A., Sopińska A., Puk K.: Wpływ immunostymulacji karpi LPS Aeromonas hydrophila na odporność nieswoistą i wrażliwość na zakażenie w teście challenge. Med. Weter. 2015, 71, 176-181.
  • Hai D. Q., Varga I. S., Matkovics B.: Effects of an organophosphate on the antioxidant systems of fish tissues. Acta Biol. Hung. 1995, 46, 39-50.
  • Hayes J. D., McLellan L. I.: Glutathione and glutathione dependent enzymes represent a coordinately regulated defence against oxidative stress. Free Radic. Res. 1999, 31, 273-300.
  • Jia R., Cao L., Xu P., Jeney G.: In vitro and in vivo hepatoprotective and antioxidant effects of Astragalus polysaccharides against carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio). Fish Physiol. Biochem. 2012, 38, 871-881.
  • Kanbur M., Eraslan G., Silici S.: Antioxidant effect of propolis against exposure to propetamphos in rats. Ecotoxicol. Environ. Saf. 2009, 72, 909-915.
  • Kappus H.: Oxidative stress in chemical toxicity. Arch. Toxicol. 1987, 60, 144-149.
  • Kohen R., Nyska A.: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 2002, 30, 620-650.
  • Kono Y., Fridovich I.: Superoxide radical inhibit catalase. J. Biol. Chem. 1982, 257, 5751-5754.
  • Koroliuk M. A., Ivanova L. I., Majorova I. G., Tokarev V. E.: A method of determinig catalase activity. Lab. Delo 1988, 1, 16-19.
  • Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.: Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951, 193, 265-275.
  • Lushchak VI.: Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011, 101, 13-30.
  • Marklund S., Marklund G.: Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469-474.
  • Modesto K. A., Martinez C. B.: Effects Roundup Transorb on fish: hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere 2010, 81, 781-787.
  • Moin V. M.: A simple and specific method for determining glutathione peroxidase activity in erythrocytes. Lab. Delo. 1986, 12, 724-727.
  • Oruç E. Ö., Usta D.: Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environ. Toxicol. Pharmacol. 2007, 23, 48-55.
  • Saeed M. O., Plumb J. A.: Immune response of channel catfish to lipopolysaccharide and whole cell Edwardsiella ictaluri vaccines. Dis. Aquat. Org. 1986, 2, 21-25.
  • Sagara Y., Dargush R., Chambers D., Davis J., Schubert D., Maher P.: Cellular mechanisms of resistance to chronic oxidative stress. Free Radic. Biol. Med. 1998, 24, 1375-1389.
  • Skrzycki M., Czeczot H.: Ekspresja genów dysmutazy ponadtlenkowej w stanie stresu oksydacyjnego. Post. Biol. Kom. 2004, 31, 81-92.
  • Solem S. T., Jorgensen J. B., Robertsen B.: Stimulation of respiratory burst and phagocytic activity in Atlantic salmon (Salmo salar, L) macrophages by lipopolysaccharide. Fish Shellfish Immunol. 1995, 5, 475-491.
  • Sorensen K. K., Sveinbjornsson B., Dalmo R. A., Smedsrod B., Bertheussen K.: Isolation, cultivation and characterisation of head kidney macrophages from Atlantic cod, Gadus morhua L. J. Fish Dis. 1997, 20, 93-107.
  • Stara A., Machova J., Velisek J.: Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Environ. Toxicol. Pharmacol. 2012, 33, 334-343.
  • Stohs S. J., Bagchi D.: Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 1995, 18, 321-336.
  • Tkachenko H., Grudniewska J., Pękala A., Terech-Majewska E.: Oxidative stress and antioxidant defence markers in muscle tissue of rainbow trout (Oncorhynchus mykiss) after vaccination against Yersinia ruckeri. J. Vet. Res. 2016, 60, 25-33.
  • Tkachenko H., Kurhaluk N., Grudniewska J., Andriichuk A.: Tissue-specific responses of oxidative stress biomarkers and antioxidant defenses in rainbow trout Oncorhynchus mykiss during a vaccination against furunculosis. Fish Physiol. Biochem. 2014, 40, 1289-1300.
  • Ural M. S.: Chlorpyrifos-induced changes in oxidant/antioxidant status and haematological parameters of Cyprinus carpio carpio: ameliorative effect of lycopene. Chemosphere 2013, 90, 2059-2064.
  • Valko M., Morris H., Cronin M. T.: Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161-1208.
  • Vig E., Nemcsok J.: The effects of hypoxia and paraquat on the superoxide dismutase activity in different organs of carp, Cyprinus carpio L. J. Fish Biol. 1989, 35, 23-25.
  • Wilczak J., Blaszczyk K., Kamola D.: The effect of low or high molecular weight oat beta-glucans on the inflammatory and oxidative stress status in the colon of rats with LPS-induced enteritis. Food Funct. 2015, 6, 590-603.
  • Winston G. W., Di Giulio R. T.: Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicol. 1991, 19, 137-161.
  • Yonar M. E., Sakin F.: Ameliorative effect of lycopene on antioxidant status in Cyprinus carpio during pyrethroid deltamethrin exposure. Pestic. Biochem. Physiol. 2011, 99, 226-231.
  • Yonar M. E., Yonar S. M., Silici S.: Protective effect of propolis against oxidative stress and immunosuppression induced by oxytetracycline in rainbow trout (Oncorhynchus mykiss, W.). Fish Shellfish Immunol. 2011, 31, 318-325.
  • Yonar M. E., Yonar S. M., Ural M. S., Silici S., Dusukcan M.: Protective role of propolis in chlorpyrifos-induced changes in the haematological parameters and the oxidative/antioxidative status of Cyprinus carpio carpio. Food Chem. Toxicol. 2012, 50, 2703-2708.
  • Zikic V., Stajn A. S., Ognjanovic B. I., Pavlovic S. Z., Saicic Z. S.: Activities of superoxide dismutase and catalase in erythrocytes and transaminases in the plasma of carps (Cyprinus carpio L.) exposed to cadmium. Physiol. Res. 1997, 46, 391-396.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.