PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 78 |

Tytuł artykułu

Particulate matter accumulation – further differences between native Prunus padus and non-native P. serotina

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Particulate matter (PM) is one of the most harmful inhaled pollutants. Where pollutants have been emitted into the atmosphere, the most effective method for cleaning the air is through phytoremediation, whereby plants act as biological filters. PM has a negative impact on plants, but knowledge of PM effects on the photosynthetic apparatus is limited. In European forests, species of the genus Prunus L. play a key role in the composition of the forest understory and urban as well as industrial plantings. Shrubs of the native P. padus L. and closely-related invasive alien P. serotina Ehrh. are particularly widespread. Thus, both are good model species in which to study the impact of PM pollution. The aim of this study was to assess the accumulation of PM in the context of leaf morphology and amount of epicuticular waxes on foliage, and the efficiency of the photosynthetic apparatus of P. padus and P. serotina. The study was conducted under controlled conditions using two variants of dust, cement and roadside PM. In addition, we analyzed the absorption of dust by leaves dividing it into three fractions by size (10−100 μm, 2.5−10 μm and 0.2−2.5 μm). Results showed that both P. padus and P. serotina accumulate PM mostly on the surface of their leaves (SPM), rather than in the wax layer (WPM). P. padus accumulated higher amounts of PM than did P. serotina. The higher presence of PM on leaves of P. padus resulted in a reduction of the efficiency of the photosynthetic apparatus, manifested by lower rates of photosynthesis and chlorophyll a fluorescence, coinciding with an increased stomatal resistance. A strong negative correlation was found between the amount of PM accumulation and the efficiency of the photosynthetic apparatus in P. padus, but not in P. serotina. We have concluded that alien P. serotina is more tolerant to the conditions of stress caused by PM pollution than is the native P. padus, which may partly explain its success in the invasion in Europe.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

78

Opis fizyczny

p.85–95,fig.,ref.

Twórcy

Bibliografia

  • Abdel-Rahman AM & Ibrahim MM (2012) Effect of cement dust deposition on physiological behaviours of some halophytes in the salt marshes of Red Sea. Egyptian Academic Journal of Biological Sciences 3: 1–11.
  • Alghamdi MA (2016) Characteristics and risk assessment of heavy metals in airborne PM10 from a residential area of northern Jeddah city, Saudi Arabia. Polish Journal of Environmental Studies 25: 939–949. doi:10.15244/pjoes/61531.
  • Amulya L, Hemanth-Kumar NK & Jagannath S (2015) Air pollution on micromorphological and biochemical response of Taberneamontana divaricata L. (Gentianales: Apocynaceae) and Hamelia patens Jacq. (Gentianales: Rubiaceae). Brazilian Journal of Biological Sciences 2: 287–294.
  • Annighöfer P, Schall P, Kawaletz H, Mölder I, Terwei A, Zerbe S & Ammer C (2012) Vegetative growth response of black cherry (Prunus serotina) to different mechanical control methods in a biosphere reserve. Canadian Journal of Forest Research 42: 2037–2051. doi:10.1139/cjfr-2012-0257.
  • Armbrust DV (1986) Effect of particulates (dust) on cotton growth, photosynthesis, and respiration. Agronomy Journal 78: 1078–1081.
  • Bakker MI, Vorenhout M, Sijm DTHM & Kolloeffel C (1999) Dry deposition of atmospheric polycyclic aromatic hydrocarbons in three Plantago species. Environmental Toxicology and Chemistry 18: 2289–2294.
  • Beckett KP, Freer-Smith PH & Taylor G (2000) Effective tree species for local air quality management. Journal of Arboriculture 26: 12–19.
  • Bell ML, Morgenstern RD & Harrington W (2011) Quantifying the human health benefits of air pollution policies: review of recent studies and new directions in accountability research. Environmental Science & Policy 14: 357–368. doi:10.1016/j.envsci.2011.02.006.
  • Burkhardt J & Grantz DA (2017) Plants and atmospheric aerosols: Progress in Botany Vol. 78 (ed. by FM Cánovas, U Lüttge & R Matyssek) Springer International Publishing, Cham, Switzerland, pp. 369–406. doi:10.1007/124_2016_12.
  • Cape JN (2009) Plants as accumulators of atmospheric emissions: Developments in Environmental Sciences. Air quality and ecological impacts: relating sources to effects (ed. by SV Krupa & AH Legge) Elsevier, Amsterdam, Nederland, pp. 61–98. doi:10.1016/S1474-8177(08)00203-9.
  • Chauhan A (2010) Photosynthetic pigment changes in some selected trees induced by automobile exhaust in Dehradun, Uttarakhand. New York Science Journal 3: 45–51.
  • Chen X, Zhou Z, Teng M, Wang P & Zhou L (2015) Accumulation of three different sizes of particulate matter on plant leaf surfaces: effect on leaf traits. Archives of Biological Sciences 67: 1257–1267. doi:10.2298/ABS150325102C.
  • Danielewicz W & Wiatrowska B (2013) Prunus virginiana L. (Rosaceae) on synanthropic sites in Poland. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria 12: 5–22.
  • Dyderski MK, Gdula AK & Wrońska–Pilarek D (2016) Present plant cover of the areas around the Rusałka Lake in Poznań in conditions of human impact. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria 15: 229–246. doi:10.17306/J.AFW.2016.4.26.
  • Dyderski MK & Jagodziński AM (2015) Encroachment of Padus serotina (Ehrh.) Borkh. into alder carrs and ash-alder riparian forests. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria 14: 103–113. doi:10.17306/J.AFW.2015.2.10.
  • Dzierżanowski K & Gawroński SW (2011) Use of trees for reducing particulate matter pollution in air. Challenges of Modern Technology 1: 69–73.
  • Dzierżanowski K, Popek R, Gawrońska H, Sæbø A & Gawroński SW (2011) Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. International Journal of Phytoremediation. 13: 1037–1046. doi:10.1080/15226514.2011.552929.
  • El–Khatib AA, Radwan DEM & Alramah-Said AA (2012) Morpho–anatomical characteristics of olive (Olea europaea L.) trees leaf as bio-indicator of cement dust air pollution in Libya. Journal of Environmental Studies 9: 65–72.
  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W & Paulissen D (1992) Zeigerwerte von pflanzen in Mitteleuropa. Scripta Geobotanica 18: 3–258.
  • Fares S, Savi F, Fusaro L, Conte A, Salvatori E, Aromolo R & Manes F (2016) Particle deposition in a peri-urban Mediterranean forest. Environmental Pollution 218: 1278–1286. doi:10.1016/j.envpol.2016.08.086.
  • Farmer A (2002) Effects of particulates: Air pollution and plant life (ed. by JNB Bell & M Treshow) John Wiley & Sons Inc., Hoboken, NJ, USA, pp. 187–199.
  • Gawrońska H & Bakera B (2015) Phytoremediation of particulate matter from indoor air by Chlorophytum comosum. Air Quality, Atmosphere & Health 8: 265–272. doi:10.1007/s11869-014-0285-4.
  • Gostin IN (2009) Air pollution effects on the leaf structure of some Fabaceae species. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37: 57–63.
  • Halarewicz A & Gabryś B (2012) Probing behavior of bird cherry-oat aphid Rhopalosiphum padi (L.) on native bird cherry Prunus padus L. and alien invasive black cherry Prunus serotina Erhr. in Europe and the role of cyanogenic glycosides. Arthropod-Plant Interactions 6: 497–505. doi:10.1007/s11829-012-9228-x.
  • Halarewicz A & Jackowski J (2011) Leaf damage of the black cherry, Prunus serotina Ehrh., by the leaf beetle, Gonioctena quinquepunctata Fabr.: an accidental foraging on a neophytic host, or an established trophic link? Polish Journal of Ecology 59: 589–597.
  • Halarewicz A & Żołnierz L (2014) Changes in the understorey of mixed coniferous forest plant communities dominated by the American black cherry (Prunus serotina Ehrh.). Forest Ecology and Management 313: 91–97. doi:10.1016/j.foreco.2013.11.006.
  • Heerden PDR, Swanepoel JW & Krüger GHJ (2007) Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environmental and Experimental Botany 61: 124–136. doi:10.1016/j.envexpbot.2007.05.005.
  • Hirano T, Kiyota M & Aiga I (1995) Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environmental Pollution 89: 255–261. doi:10.1016/0269-7491(94)00075-O.
  • Houston Durrant T & Caudullo G (2016) Prunus padus in Europe: distribution, habitat, usage and threats: European atlas of forest tree species (ed. by J San-Miguel-Ayanz, D De Rigo, G Caudullo, T Houston Durrant & A Mauri) Publication Office EU, Luxembourg, Luxembourg, pp. e011e89.
  • Hsu HH, Chiu YH, Coull BA, Kloog I, Schwartz J, Lee A, Wright RO & Wright RJ (2015) Prenatal particulate air pollution and asthma onset in urban children. Identifying sensitive windows and sex differences. American Journal of Respiratory and Critical Care Medicine 192: 1052–1059. doi:10.1164/rccm.201504-0658OC.
  • Jagodziński AM, Dyderski MK, Gdula AK, Rawlik M & Kasprowicz M (2015) Zróżnicowanie flory roślin naczyniowych runa pod drzewostanami powstałymi w wyniku rekultywacji zwałowiska pokopalnianego. Studia i Materiały CEPL w Rogowie 17: 249–261.
  • Jeffree CE (2007) The fine structure of the plant cuticle: Annual Plant Reviews Volume 23: Biology of the plant cuticle (ed. by M Riederer & C Müller) Blackwell Publishing Ltd, Oxford, Great Britain, pp. 11–125. doi.10.1002/9780470988718.ch2.
  • Jędrychowski WA, Perera FP, Camann D, Spengler J, Butscher M, Mroz E, Majewska R, Flak E, Jacek R & Sowa A (2015) Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environmental Science and Pollution Research 22: 3631–3639. doi:10.1007/s11356-014-3627-8.
  • Jędrychowski W, Perera F, Maugeri U, Mrozek-Budzyn D, Miller RL, Flak E, Mroz E, Jacek R & Spengler JD (2011) Effects of prenatal and perinatal exposure to fine air pollutants and maternal fish consumption on the occurrence of infantile eczema. International Archives of Allergy and Immunology 155: 275–281. doi:10.1159/000320376.
  • Jouraeva VA, Johnson DL, Hassett JP & Nowak DJ (2002) Differences in accumulation of PAHs and metals on the leaves of Tilia ×euchlora and Pyrus calleryana. Environmeal Pollution 120: 331–338.
  • Karolewski P, Giertych MJ, Żmuda M, Jagodziński AM & Oleksyn J (2013) Season and light affect constitutive defenses of understory shrub species against folivorous insects. Acta Oecologica 53: 19–32. doi:10.1016/j.actao.2013.08.004.
  • Karolewski P, Jagodziński AM, Giertych MJ, Łukowski A, Baraniak E & Oleksyn J (2014) Invasive Prunus serotina – a new host for Yponomeuta evonymellus (Lepidoptera: Yponomeutidae)? European Journal of Entomology 111: 227–236. doi:10.14411/eje.2014.026.
  • Karolewski P, Zadworny M, Mucha J, Napierała-Filipiak A & Oleksyn J (2010) Link between defoliation and light treatments on root vitality of five understory shrubs with different resistance to insect herbivory. Tree Physiology 30: 969–978. doi:10.1093/treephys/tpq060.
  • Kuki KN, Oliva MA, Pereira EG, Costa AC & Cambraia J (2008) Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L. Science of Total Environment 403: 207–214. doi:10.1016/j.scitotenv.2008.05.004.
  • Leonard RL, McArthur C & Hochuli DF (2016) Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban Forestry & Urban Greening 20: 249–253. doi:10.1016/j.ufug.2016.09.008.
  • Łukowski A, Giertych MJ, Walczak U, Baraniak E & Karolewski P (2017) Light conditions affect the performance of Yponomeuta evonymellus on its native host Prunus padus and the alien Prunus serotina. Bulletin of Entomological Research. 107: 208–216. doi:10.1017/S0007485316000791.
  • Łukowski A, Mąderek E & Karolewski P (2014) Wpływ warunków świetlnych na namiotnika czeremszaczka – głównego szkodnika czeremchy zwyczajnej. Sylwan 158: 595–603.
  • Mąderek E, Łukowski A, Giertych MJ & Karolewski P (2015) Influence of native and alien Prunus species and light conditions on performance of the leaf beetle Gonioctena quinquepunctata. Entomologia Experimentalis et Applicata 155: 193–205. doi:10.1111/eea.12298.
  • McDonald AG, Bealey WJ, Fowler D, Dragosits U, Skiba U, Smith RI, Donovan RG, Brett HE, Hewitt CN & Nemitz E (2007) Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmospheric Environment 41: 8455–8467. doi:10.1016/j.atmosenv.2007.07.025.
  • Mitchell R, Maher BA & Kinnersley R (2010) Rates of particulate pollution deposition onto leaf surfaces: temporal and inter-species magnetic analyses. Environmental Pollution 158: 1472–1478. doi:10.1016/j.envpol.2009.12.029.
  • Mizera P, Grajewski SM & Kasztelan A (2016) The floral characteristics of the road edge effect on the example of a road with low traffic volume in the “Puszcza Notecka” forest. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria 15: 297–312. doi:10.17306/J.AFW.2016.4.30.
  • Müller C & Riederer M (2005) Plant surface properties in chemical ecology. Journal of Chemical Ecology 31: 2621–2651. doi:10.1007/s10886-005-7617-7.
  • Naidoo G & Chirkoot D (2004) The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marina in Richards Bay, South Africa. Environmental Pollution 127: 359–366. doi:10.1016/j.envpol.2003.08.018.
  • Nanos GD & Ilias IF (2007) Effects of inert dust on olive (Olea europaea L.) leaf physiological parameters. Environmental Science and Pollution Research International 14: 212–214. doi:10.1065/espr2006.08.327.
  • Nawrot B, Dzierżanowski K & Gawroński SW (2011) Accumulation of particulate matter, PAHs and heavy metals in canopy of small-leaved lime. Environmental Protection and Natural Resources 49: 52–60.
  • OECD (Organization For Economic Co-Operation And Development) (2012) Environmental Outlook to 2050: The Consequences of Inaction. OECD Publishing, Paris, France.
  • Pairon M, Petitpierre B, Campbell M, Guisan A, Broennimann O, Baret PV, Anne-Jacquemart AL & Besnard G (2010) Multiple introductions boosted genetic diversity in the invasive range of black cherry (Prunus serotina; Rosaceae). Annals of Botany 105: 881–890. doi:10.1093/aob/mcq065.
  • Popek R, Gawrońska H & Gawroński SW (2015) The level of particulate matter on foliage depends on the distance from the source of emission. International Journal of Phytoremediation 17: 1262–1268. doi:10.1080/15226514.2014.989312.
  • Popek R, Gawrońska H, Wrochna M, Gawroński SW & Sæbø A (2013) Particulate matter on foliage of 13 woody species: deposition on surfaces and phytostabilisation in waxes – a 3year study. International Journal of Phytoremediation 15: 245–256. doi:10.1080/15226514.2012.694498.
  • Power AL, Worsley AT & Booth C (2009) Magneto-biomonitoring of intraurban spatial variations of particulate matter using tree leaves. Environmental Geochemistry and Health 31: 315–325. doi:10.1007/s10653-008-9217-2.
  • Prusty BAK, Mishra PC & Azeez PA (2005) Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicology and Environmental Safety 60: 228–235. doi:10.1016/j.ecoenv.2003.12.013.
  • Przybysz A, Popek R, Gawrońska H, Grab K, Romanowska K, Wrochna M & Gawroński SW (2014) Efficiency of photosynthetic apparatus of plants grown in sites differing in level of PM. Acta Scientiarum Polonorum Hortorum Cultus 13: 216–222.
  • Sæbø A, Popek R, Nawrot B, Hanslin HM, Gawrońska H & Gawroński SW (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Environment 427–428: 347–35. doi:10.1016/j.scitotenv.2012.03.084.
  • Saravia J, Lee GI, Lomnicki S, Dellinger B & Cormier SA (2013) Particulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects: a review. Journal of Biochemical and Molecular Toxicology 27: 56–68. doi:10.1002/jbt.21465.
  • Seneta W & Dolatowski J (2008) Dendrologia. 4th ed. Wydawnictwo Naukowe PWN. Warsaw, Poland.
  • Silva RA, West JJ, Zhang Y, Anenberg SC, Lamarque J-F, Shindell DT, Collins WJ, Dalsoren S, Faluvegi G & Folberth G (2013) Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environmental Research Letters 8: 34005. doi:10.1088/1748-9326/8/3/034005.
  • Siqueira-Silva AI, Pereira EG, Modolo LO & Paiva EAS (2016) Leaf structural traits of tropical woody species resistant to cement dust. Environmental Science and Pollution Research 23: 16104–16114. doi:10.1007/s11356-016-6793-z.
  • Song Y, Maher BA, Li F, Wang X, Sun X & Zhang H (2015) Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmospheric Environment 105: 53–60. doi:10.1016/j.atmosenv.2015.01.032.
  • Tomašević M, Vukmirović Z, Rajšić S, Tasić M & Stevanović B (2005) Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area. Chemosphere 61: 753–760. doi:10.1016/j.chemosphere.2005.03.077.
  • Vailshery LS, Jaganmohan M & Nagendra H (2013) Effect of street trees on microclimate and air pollution in a tropical city. Urban Forestry & Greening 12: 408–415. doi:10.1016/j.ufug.2013.03.002.
  • Vanhellemont M, Verheyen K, De Keersmaeker L, Vandekerkhove K & Hermy M (2009) Does Prunus serotina act as an aggressive invader in areas with a low propagule pressure? Biological Invasions 11: 1451–1462. doi:10.1007/s10530-008-9353-8.
  • Vardaka E, Cook CM, Lanaras T, Sgardelis SP & Pantis JD (1995) Effect of dust from a limestone quarry on the photosynthesis of Quercus coccifera, an evergreen schlerophyllous shrub. Bulletin of Environmental Contamination and Toxicology 54: 414–419.
  • Villeneuve PJ, Burnett RT, Shi YL, Krewski D, Goldberg MS, Hertzman C, Chen Y & Brook J (2003) A time-series study of air pollution, socioeconomic status, and mortality in Vancouver, Canada. Journal of Exposure Analysis and Environmental Epidemiology 13: 427–435. doi:10.1038/sj.jea.7500292.
  • Weuve J, Puett RC, Schwartz J, Yanosky JD, Laden F & Grodstein F (2012) Exposure to particulate air pollution and cognitive decline in older women. Archives of Internal Medicine172: 219–227. doi:10.1001/archinternmed.2011.683.
  • WHO (World Health Organisation) 2016 Ambient (outdoor) air pollution in cities database. WHO Regional Office for Europe, Copenhagen, Denmark.
  • Yang J, McBride J, Zhou J & Sun Z (2005) The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Greening 3: 65–68. doi:10.1016/j.ufug.2004.09.001.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b064b47c-46f1-4fc0-af9f-8da0b31596a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.