PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 04 |

Tytuł artykułu

Effects of arbuscular mycorrhizal colonization on the biomass and bioenergy production of Populus x canadensis "Neva" in sterilized and unsterilized soil

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Arbuscular mycorrhizal (AM) symbiosis can improve the growth of poplar, which is considered to be a bioenergy feedstock and a substitute for fossil fuels. Microbes in plant rhizosphere may affect the interaction between AM fungi and host plant. The role of AM fungi on the biomass and bioenergy production of poplar in the presence or absence of other soil microorganisms was less investigated. In this study, the effects of Rhizophagus irregularis and Glomus versiforme on the growth, root-absorbing area, chlorophyll content, gas exchange, total organic carbon (TOC) content, gross calorie value (GCV), lignin and cellulose content of Populus × canadensis ‘Neva’ in sterilized and unsterilized soil were evaluated. The results showed that AM symbiosis increased the biomass parameters such as stem length, ground diameter, dry weight, root-absorbing area, chlorophyll content and gas exchange capacity, as well as bioenergy parameters such as TOC content, GCV and lignin content of poplar seedlings, but did not affect the cellulose content. The extent of this enhancement varied within AM fungi species and soil conditions. The effect of AM was higher in sterilized soil than that in unsterilized soil, and the function of R. irregularis was greater than G. versiforme in sterilized soil, but lower in unsterilized soil. In general, G. versiforme exhibited higher applying potential in the biomass and bioenergy production of poplar.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

04

Opis fizyczny

p.871-880,fig.,ref.

Twórcy

autor
  • College of Life Sciences, Northwest A and F University, 712100 Yangling, Shaanxi, China
autor
  • College of Forestry, Northwest A and F University, 712100 Yangling, Shaanxi, China
autor
  • College of Forestry, Northwest A and F University, 712100 Yangling, Shaanxi, China
autor
  • College of Forestry, Northwest A and F University, 712100 Yangling, Shaanxi, China
autor
  • College of Life Sciences, Northwest A and F University, 712100 Yangling, Shaanxi, China
autor
  • College of Forestry, Northwest A and F University, 712100 Yangling, Shaanxi, China

Bibliografia

  • Aasamaa K, Heinsoo K, Holm B (2010) Biomass production, water use and photosynthesis of Salix clones grown in a wastewater purification system. Biomass Bioenerg 34:897–905
  • Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab MA (2012) Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J Plant Physiol 169:704–709
  • Aravanopoulos FA (2010) Breeding of fast growing forest tree species for biomass production in Greece. Biomass Bioenerg 34:1531–1537
  • Atafar Z, Mesdaghinia A, Nouri J, Homaee M, Yunesian M, Ahmadimoghaddam M, Mahvi AH (2010) Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess 160:83–89
  • Bakonyi G, Posta K, Kiss I, Fábián M, Nagy P, Nosek JN (2002) Density-dependent regulation of arbuscular mycorrhiza by collembola. Soil Biol Biochem 34:661–664
  • Baum C, Makeshin F (2000) Effects of nitrogen and phosphorus fertilisation on mycorrhizal formation of two poplar clones (Populus trichocarpa and P. tremula × tremuloides). J Plant Nutr Soil Sci 163:491–497
  • Blilou I, Ocampo JA, García-Garrido JM (2000) Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. J Exp Bot 51:1969–1977
  • Campbell MM, Sederoff RR (1996) Variation in lignin content and composition: mechanism of control and implications for the genetic improvement of plants. Plant Physiol 110:3–13
  • Cao X, Jia JB, Li H, Li MC, Luo J, Liang ZS, Liu TX, Liu WG, Peng CH, Luo ZB (2012) Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species. Plant Biol 14:612–620
  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metalcontaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot Lond 106:791–802
  • De Deyn GB, Quirk H, Oakley S, Ostle N, Bardgett RD (2011) Rapid transfer of photosynthetic carbon through the plant–soil system in differently managed species-rich grasslands. Biogeosciences 8:1131–1139
  • de Vries BJM, van Vuuren DP, Hoogwijk MM (2007) Renewable energy sources: their global potential for the first-half of the 21st century at a global level: an integrated approach. Energ Policy 35:2590–2610
  • Delmer DP, Haigler CH (2002) The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metab Eng 4:22–28
  • Demirbaş A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energ Source 27:327–337
  • Dinus RJ, Payne P, Sewell MM, Chiang VL, Tuskan GA (2001) Genetic modification of short rotation popular wood: properties for ethanol fuel and fiber productions. Crit Rev Plant Sci 20:51–69
  • Djomo SN, Kasmioui OE, Ceulemans R (2011) Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. GCB Bioenerg 3:181–197
  • Endlweber K, Scheu S (2006) Establishing arbuscular mycorrhizafree soil: a comparison of six methods and their effects on nutrient mobilization. Appl Soil Ecol 34:276–279
  • Feugey L, Strullu DG, Poupard P, Simoneau P (1999) Induced defence responses limit Hartig net formation in ectomycorrhizal birch roots. New Phytol 144:541–547
  • Gao JF (2000) Techniques of plant physiology. World Publishing Corporation, Xi’an
  • Gehring CA, Mueller RC, Whitham TG (2006) Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia 149:158–164
  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530
  • Glassman SI, Casper BB (2012) Biotic contexts alter metal sequestration and AMF effects on plant growth in soils polluted with heavy metals. Ecol 93:1550–1559
  • Gong MG, Tang M, Chen H, Zhang QM, Feng XX (2013) Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New For 44:399–408
  • He CY, Zhang JG, Duan AG, Zheng SX, Sun HG, Fu LH (2008) Proteins responding to drought and high-temperature stress in Populus × euramericana cv. ‘74/76’. Trees 22:803–813
  • Hisano H, Nandakumar R, Wang ZY (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Pl 45:306–313
  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16
  • Jeong MJ, Choi BS, Bae DW, Shin SC, Park SU, Lim HS, Kim J, Kim JB, Cho BK, Bae H (2012) Differential expression of kenaf phenylalanine ammonia-lyase (PAL) ortholog during developmental stages and in response to abiotic stresses. Plant Omics J 5:392–399
  • Johansson JF, Paul LR, Finlay RD (2006) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13
  • Khasa PD, Chakravarty P, Robertson A, Thomas BR, Dancik BP (2002) The mycorrhizal status of selected poplar clones introduced in Alberta. Biomass Bioenerg 22:99–104
  • Liu SC (2003) Assay and examination of pulp manufacture and papermaking, 3rd edn. China Chemistry Industry Press, Beijing
  • Lopez-Aguillon R, Garbaye J (1990) Some aspects of a double symbiosis with ectomycorrhizal and VAM fungi. Agr Ecosyst Environ 29:263–266
  • Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323
  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2009) Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Till Res 104:48–55
  • Ortas I (2012) The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under longterm field conditions. Field Crop Res 125:35–48
  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161
  • Quoreshi AM, Khasa DP (2008) Effectiveness of mycorrhizal inoculation in the nursery on root colonization, growth, and nutrient uptake of aspen and balsam poplar. Biomass Bioenerg 32:381–391
  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489
  • Reva V, Fonseca L, Lousada JL, Abrantes I, Viegas DX (2012) Impact of the pinewood nematode, Bursaphelenchus xylophilus, on gross calorific value and chemical composition of Pinus pinaster woody biomass. Eur J For Res 131:1025–1033
  • Richet N, Afif D, Huber F, Pollet B, Banvoy J, Zein RE, Lapierre C, Dizengremel P, Perré P, Cabané M (2011) Cellulose and lignin biosynthesis is altered by ozone in wood of hybrid poplar (Populus tremula × alba). J Exp Bot 62:3575–3586
  • Rooney DC, Killham K, Bending GD, Baggs E, Weih M, Hodge A (2009) Mycorrhizas and biomass crops: opportunities for future sustainable development. Trends Plant Sci 14:542–549
  • Rooney DC, Prosser JI, Bending GD, Baggs EM, Killham K, Hodge A (2011) Effect of arbuscular mycorrhizal colonisation on the growth and phosphorus nutrition of Populus euramericana c.v. Ghoy. Biomass Bioenerg 35:4605–4612
  • Rubin ES, Cooper RN, Frosch RA, Lee TH, Marland G, Rosenfeld AH, Stine DD (1992) Realistic mitigation options for global warming. Science 257(148–149):261–266
  • Seppänen SK, Pasonen HL, Vauramo S, Vahala J, Toikka M, Kilpeläinen I, Setälä H, Teeri TH, Timonen S, Pappinen A (2007) Decomposition of the leaf litter and mycorrhiza forming ability of silver birch with a genetically modified lignin biosynthesis pathway. Appl Soil Ecol 36:100–106
  • Sheng M, Tang M, Chen H, Yang BW, Zhang FF, Huang YH (2009) Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Can J Microbiol 55:879–886
  • Sheng M, Tang M, Zhang FF, Huang YH (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430
  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New York
  • Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci USA 108:6300–6305
  • Telmo C, Lousada J, Moreira N (2010) Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Biores Technol 101:3808–3815
  • Tiunov AV, Scheu S (2005) Arbuscular mycorrhiza and collembola interact in affecting community composition of saprotrophic microfungi. Oecologia 142:636–642
  • Tullus A, Tullus H, Soo T, Pärn L (2009) Above-ground biomass characteristics of young hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantations on former agricultural land in Estonia. Biomass Bioenerg 33:1617–1625
  • Valavanidis A, Vlachogianni T (2011) Agricultural pesticides: ecotoxicological studies and environmental risk assessment. Science advances on environment, toxicology and ecotoxicology issues http://chem-tox-ecotox.org
  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20
  • Wang HZ, Xue YX, Chen YJ, Li RF, Wei JH (2012) Lignin modification improves the biofuel production potential in transgenic Populus tomentosa. Ind Crop Prod 37:170–177
  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013
  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166
  • Wu QS, Zou YN, He XH (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32:297–304
  • Yang ZF, Wang Y, Shen ZY, Niu JF, Tang ZW (2009) Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J Hazard Mater 166:1186–1194
  • Yemshanov D, McKenney D (2008) Fast-growing poplar plantations as a bioenergy supply source for Canada. Biomass Bioenerg 32:185–197
  • Zai XM, Zhu SN, Qin P, Wang XY, Che L, Luo FX (2012) Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress. Photosynthetica 50:323–328
  • Zhu XC, Song FB, Xu HW (2010) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b04b4163-8a49-4b0f-9269-7cc66f06f9c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.