PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 3 |

Tytuł artykułu

Optical properties of chromophoric dissolved organic matter in the Yinma River watershed and drinking water resource of Northeast China

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Spectral characteristics of optically active constituents (OACs) in waters are key parameters of biooptical modeling. Comparative analyses about the differences of optical characteristics and composition between riverine and reservoir waters in the second Songhuajiang River tributaries were conducted, and the influencing factors impacting on chromophoric dissolved organic matter (CDOM) and organic carbon (DOC) were examined based on the absorption properties. Dissolved organic carbon (DOC) and total suspended matter (TSM) were significantly higher in the riverine waters, and chlorophyll-a (Chl-a) was opposite. The relationship between the CDOM absorption coefficient at specific wavelength and DOC concentration both in the riverine and reservoir waters exhibited a positive correlation (r = 0.90, p< 0.01). The close relationship between Chl-a concentration and CDOM absorption confirmed a small amount of phytoplankton absorption to total absorption in the individual samplings. Analysis of absorption ratio (E250:365), specific UV absorbance (SUVA254), and spectral slope ratio (Sr) indicated that CDOM in riverine waters had lower aromaricity, molecular weight, and vascular plant contributions than in reservoir waters. Furthermore, non-algal particles played an important role in the total non-water absorption for riverine waters, and CDOM was dominant in the reservoir waters. This indicated that the Yinma River watershed was strongly influenced by the artificial discharge. As a parameter of the bio-optical model, the spectral characteristics of CDOM could help to adjust derived algorithms based on remote sensing and to estimate the dissolved organic carbon flux.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

3

Opis fizyczny

p.1061-1073,fig.,ref.

Twórcy

autor
  • Nature Disaster Research Institute, Environment College, Northeast Normal University, Chang Chun 130024, People’s Republic of China
autor
  • Nature Disaster Research Institute, Environment College, Northeast Normal University, Chang Chun 130024, People’s Republic of China
autor
  • Grassland Science Institute, Life Science College, Northeast Normal University, Chang Chun 130000, People’s Republic of China
autor
  • Nature Disaster Research Institute, Environment College, Northeast Normal University, Chang Chun 130024, People’s Republic of China
autor
  • Nature Disaster Research Institute, Environment College, Northeast Normal University, Chang Chun 130024, People’s Republic of China
autor
  • Nature Disaster Research Institute, Environment College, Northeast Normal University, Chang Chun 130024, People’s Republic of China
autor
  • Nature Disaster Research Institute, Environment College, Northeast Normal University, Chang Chun 130024, People’s Republic of China
autor
  • Nature Disaster Research Institute, Environment College, Northeast Normal University, Chang Chun 130024, People’s Republic of China
autor
  • Nature Disaster Research Institute, Environment College, Northeast Normal University, Chang Chun 130024, People’s Republic of China

Bibliografia

  • 1. GONNELLI M., VESTRI S., SANTINELLI C. Chromophoric dissolved organic matter and microbial enzymatic activity. A biophysical approach to understand the marine carbon cycle. Biophysical chemistry. 182, 79, 2013.
  • 2. BATTIN T. J., KAPLAN L.A., FINDLAY S., HOPKINSON C.S., MARTI E., PACKMAN A.I., NWEBOLD J.D., SABATER, F. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience. 1 (2), 95, 2008.
  • 3. YAN L., JIANG L., TANG Y., YU H., SHENG S.,Yu G. Investigating the Effects of Small Synthetic Organic Matters on Dissolved Organic Matter Adsorption. Water, Air, & Soil Pollution. 226 (11), 1, 2015.
  • 4. AIKEN G.R., HSU-KIM H., RYAN J.N. Infl uence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environmental science & technology. 45 (8), 3196, 2011.
  • 5. SPENCER R.G., BUTLER K.D., AIKEN G.R. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. Journal of Geophysical Research: Biogeosciences (2005-2012). 117(G3), 2012.
  • 6. COBLE P.G. Marine optical biogeochemistry: the chemistry of ocean color. Chemical reviews. 107 (2), 402, 2007.
  • 7. CHEN Z., LI Y., PAN J. Distributions of colored dissolved organic matter and dissolved organic carbon in the Pearl River Estuary, China. Continental Shelf Research. 24 (16), 1845, 2004.
  • 8. COLE J.J., PRAIRIE Y.T., CARACO N.F., MCDOWELL W.H., TRANVIK L.J., STRIEGL R.G., DUARTE C.M., KORTELAINEN P., DOWNING J.A., MIDDELBURG J.J., MELACK, J. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems. 10 (1), 172, 2007.
  • 9. SPENCER R.G., STUBBINS A., HERNES P.J., BAKER A., MOPPER K., AUFDENKAMPE A.K., RACHAEL Y.D., VINCENTL M., MANGANGU A.M., WABAKANGHANZI J.N., SIX J. Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. Journal of Geophysical Research: Biogeosciences (2005-2012). 114(G3), 2009.
  • 10. ZHU W., YU Q., TIAN Y.Q., BECKER B.L., ZHENG T., CARRICK H.J. An assessment of remote sensing algorithms for colored dissolved organic matter in complex freshwater environments. Remote Sensing of Environment. 140, 766, 2014.
  • 11. SONG K., LI L., TEDESCO L.P., LI S., HALL B.E., DU J. Remote quantification of phycocyanin in potable water sources through an adaptive model. ISPRS Journal of Photogrammetry and Remote Sensing. 95, 68, 2014.
  • 12. WEN Z.D., SONG K.S., ZHAO Y., DU J., MA J.H. Influence of environmental factors on spectral characteristic of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China. Hydrology & Earth System Sciences Discussions. 12 (6), 5895, 2015.
  • 13. ORGANELLI E., BRICAUD A., ANTOINE D., MATSUOKA A. Seasonal dynamics of light absorption by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site). Deep Sea Research Part I: Oceanographic Research Papers. 91, 72, 2014.
  • 14. MATSUOKA A., HOOKER S.B., BRICAUD A., GENTILI B., BABIN M. Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space. Biogeosciences. 10 (2), 917, 2013.
  • 15. WILLIAMSON C.E., ROSE K.C. When UV meets fresh water. Science (Washington). 329 (5992), 637, 2010.
  • 16. STEDMON C.A., THOMAS D.N., PAPADIMITRIOU S., GRANSKOG M.A., DIECKMANN G.S. Using fluorescence to characterize dissolved organic matter in Antarctic sea ice brines. Journal of Geophysical Research: Biogeosciences (2005-2012), 116(G3), 2011.
  • 17. CORY R.M., MCKNIGHT D.M., CHIN Y.P., MILLER P., JAROS C.L. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations. Journal of Geophysical Research: Biogeosciences (2005-2012). 112, 2007.
  • 18. LEDESMA J.L., KöHLER S.J., FUTTER M.N. Long-term dynamics of dissolved organic carbon: Implications for drinking water supply. Science of the total Environment. 432, 1, 2012.
  • 19. ZHANG Y., QIN B., ZHU G., ZHANG L., YANG L. Chromophoric dissolved organic matter (CDOM) absorption characteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropical lake. Hydrobiologia. 581 (1), 43, 2007.
  • 20. JAFFÉ R., MCKNIGHT D., MAIE N., CORY R., MCDOWELL W.H., CAMPBELL J.L. Spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. Journal of Geophysical Research: Biogeosciences (2005-2012). 113(G4), 2008.
  • 21. SIEGEL D.A., MARITORENA S., NELSON N.B., BEHRENFELD M.J. Independence and interdependencies among global ocean color properties: Reassessing the bioptical assumption. Journal of Geophysical Research: Oceans (1978-2012). 110(C7), 2005.
  • 22. MANN P.J., DAVYDOVA A., ZIMOV N., SPENCER R.G.M., DAVYDOV S., BULYGINA, E., ZIMOV, S., HOLMES, R. M. Controls on the composition and lability of dissolved organic matter in Siberia›s Kolyma River basin. Journal of Geophysical Research: Biogeosciences (2005–2012). 117(G1), 2012.
  • 23. HEDGES J.I., KEIL R.G., BENNER R. What happens to terrestrial organic matter in the ocean?.Organic geochemistry. 27 (5), 195, 1997.
  • 24. PHONG D.D., LEE Y., SHIN K.H., HUR J. Spatial variability in chromophoric dissolved organic matter for an artificial coastal lake (Shiwha) and the upstream catchments at two different seasons. Environmental Science and Pollution Research. 21 (12), 7678, 2014.
  • 25. JIANG R., HATANO R., ZHAO Y., KURAMOCHI K., HAYAKAWA A., WOLI K.P., SHIMIZU M. Factors controlling nitrogen and dissolved organic carbon exports across timescales in two watersheds with different land uses. Hydrological processes. 28 (19), 5105, 2014.
  • 26. STEDMON C.A., MARKAGER S., KAAS H. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuarine, Coastal and Shelf Science. 51 (2), 267, 2000.
  • 27. XIE H., AUBRY C., ZHANG Y., SONG G. Chromophoric dissolved organic matter (CDOM) in fi rst-year sea ice in the western Canadian Arctic. Marine Chemistry. 165, 25, 2014.
  • 28. WEISHAAR J.L., AIKEN G.R., BERGAMASCHI B.A., FRAM M.S., FUJII R., MOPPER K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology. 37 (20), 4702, 2003.
  • 29. SHAO T., SONG K., DU J., ZHAO Y., DING Z., GUAN Y., LIU L., ZHANG B. Seasonal Variations of CDOM Optical Properties in Rivers Across the Liaohe Delta. Wetlands. 1, 2015.
  • 30. HELMS J.R., STUBBINS A., RITCHIE J.D., MINOR E.C., KIEBER D.J., MOPPER K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography. 53 (3), 955, 2008.
  • 31. NELSON N.B., SIEGEL D.A., CARLSON C.A., SWAN C.M. Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter. Geophysical Research Letters. 37 (3), 2010.
  • 32. COBLE P.G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine chemistry. 51 (4), 325, 1996.
  • 33. STEDMON C.A., MARKAGER S. Resolving the variability in dissolved organic matter fl uorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography. 50 (2), 686, 2005.
  • 34. LIU H., QI W.B., YU D.W., XIE X.M. Study on Ecological Operation in Yinmahe River Basin. Journal of China hydrology. 33, 35, 2013.
  • 35. ZHOU J., GAO F., ZHANG B., BIAO M. Assessment on the potential biological toxicity risk of toxic heavy metals in the surficial sediments of Songhua River. Acta Scientiae Circumstantiae. 34, 2701, 2014,
  • 36. INAMDAR S.P., O'LEARY N., MITCHELL M.J., RILEY J.T. The impact of storm events on solute exports from a glaciated forested watershed in western New York, USA. Hydrological Processes. 20, 3423, 2006.
  • 37. PELLERIN B.A., SARACENO J.F., SHANLEY J.B., SEBESTYEN S.D., AIKEN G.R., WOLLHEIM W.M., BERGAMASCHI, B. A. Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream. Biogeochemistry. 108, 183, 2012.
  • 38. SONG K., LI L., WANG Z., LIU D., ZHANG B., XU J., DU J., LI L., LI S., WANG Y. Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remotesensing data for drinking water resources. Environmental monitoring and assessment. 184, 1449, 2012.
  • 39. BRICAUD A., MOREL A., PRIEUR L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography. 26, 43, 1981.
  • 40. POPE R. M., FRY E. S. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. Applied Optics. 36 (33), 8710, 1997.
  • 41. MILLER W.L. Effects of UV radiation on aquatic humus: Photochemical principles and experimental considerations//Aquatic Humic Substances. Springer Berlin Heidelberg. 125, 1998.
  • 42. DE HAAN H., DE BOER T. Applicability of light absorbance and fluorescence as measures of concentration and molecular size of dissolved organic carbon in humic Lake Tjeukemeer. Water Research. 21 (6), 731, 1987.
  • 43. PEURAVUORI J., PIHLAJA K. Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta. 337, 133, 1997.
  • 44. ZHANG Y., ZHANG E., YIN Y., VAN DIJK M.A., FENG L., SHI Z., LIU M., QINA B. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude. Limnology and Oceanography. 55, 2645, 2010.
  • 45. SONG K.S., ZANG S.Y., ZHAO Y., LI L., DU J., ZHANG N.N., WANG X.D., SHAO T.T., GUAN Y., LIU L. Spatiotemporal characterization of dissolved carbon for inland waters in semi-humid/semi-arid region, China. Hydrology and Earth System Sciences. 17, 4269, 2013.
  • 46. BAKER A., BOLTON L., NEWSON M., SPENCER R.G. Spectrophotometric properties of surface water dissolved organic matter in an afforested upland peat catchment. Hydrological Processes. 22, 2325, 2008.
  • 47. ASMAlLA E., AUTIO R., KAARTOKALLIO H., PITKÄNEN L., STEDMON C., THOMAS D.N. Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use. Biogeosciences. 10, 6969, 2013.
  • 48. FICHOT C.G., BENNER R. The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnology and Oceanography. 57, 1453, 2012.
  • 49. MANNINO A., RUSS M.E., HOOKER S.B. Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the US Middle Atlantic Bight. Journal of Geophysical Research: Oceans (1978-2012). 113 (C7), 2008.
  • 50. STEDMON C.A., BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods. 6, 572, 2008.
  • 51. CARDER K.L., STEWARD R.G., HARVEY G.R., ORTNER P.B. Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll. Limnology and oceanography. 34, 68, 1989.
  • 52. CARDER K.L., HAWES S.K., BAKER K.A., SMITH R., STEWARD R.G., MITCHELL B.G. Reflectance model for quantifying chlorophyll a in the presence oi productivity degradation products. Journal of Geophysical Research. 96, 20599, 1991.
  • 53. VODACEK A., BLOUGH N.V., DEGRANDPRE M.D., NELSON R.K. Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial inputs and photooxidation. Limnology and Oceanography. 42, 674, 1997.
  • 54. BROOKS P.D., LEMON M.M. Spatial variability in dissolved organic matter and inorganic nitrogen concentrations in a semiarid stream, San Pedro River, Arizona. Journal of Geophysical Research: Biogeosciences (2005-2012). 112, 2007.
  • 55. BREZONIK P.L., OLMANSON L.G., FINLAY J.C., BAUER M.E. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sensing of Environment. 157, 199, 2015.
  • 56. FRENETTE J.J., ARTS M.T., MORIN J. Spectral gradients of downwelling light in a fluvial lake (Lake Saint-Pierre, St-Lawrence River). Aquatic Ecology. 37, 77, 2003.
  • 57. LEE Z.P., CARDER K.L., ARNONE R.A. Deriving inherent optical properties from water color: a multiband quasianalytical algorithm for optically deep waters. Applied optics. 41, 5755, 2002.
  • 58. LEE Z., LUBAC B., WERDELL J., ARNONE R. An update of the quasi-analytical algorithm (QAA_v5). International Ocean Color Group Software Report. 2009.
  • 59. ZHENG G.M., STRAMSKI D., REYNOLDS R.A. Evaluation of the quasi-analytical algorithm for estimating the inherent optical properties of seawater from ocean color: comparison of Arctic and lower-latitude waters. Remote Sensing of Environmrnt. 155, 194, 2014.
  • 60. HOGE F.E., VODACEK A., SWIFT R.N., YUNGEL J.K., BLOUGH N.V. Inherent optical properties of the ocean: retrieval of the absorption coeffi cient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements. Applied optics. 34, 7032, 1995.
  • 61. ROCHELLE-NEWALL E.J. Dynamics of chromophoric dissolved organic matter and dissolved organic carbon in experimental mesocosms. International Journal of Remote Sensing. 20, 627, 1999.
  • 62. YU Q., TIAN Y.Q., CHEN R.F., LIU A., GARDNER G.B., ZHU W. Functional linear analysis of in situ hyperspectral data for assessing CDOM in rivers. Photogrammetric Engineering & Remote Sensing. 76, 1147, 2010.
  • 63. BRACCHINI L., DATTILO A.M., HULL V., LOISELLE S., NANNICINI L., PICCHI M.P., RICCI M., SANTINELLI C., SERITTI A., TOGNAZZI A., ROSSI, C. Spatial and seasonal changes in optical properties of autochthonous and allochthonous chromophoric dissolved organic matter in a stratified mountain lake. Photochemical & Photobiological Sciences. 9, 304, 2010

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b02509b5-c51a-4be7-a85b-13c93afe0dd2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.