PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 44 | 3 |

Tytuł artykułu

High coordination lattice models of protein structure, dynamics and thermodynamics

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A high coordination lattice discretization of protein conformational space is described. The model allows discrete representation of polypeptide chains of globular proteins and small macromolecular assemblies with an accuracy comparable to the accuracy of crystallographic structures. Knowledge based force Held, that consists of sequence specific short range interactions, coopera­tive model of hydrogen bond network and tertiary one body, two body and multibody interactions, is outlined and discussed. A model of stochastic dy­namics for these protein models is also described. The proposed method enables moderate resolution tertiary structure prediction of simple and small globular proteins. Its applicability in structure prediction increases significantly when evolutionary information is exploited or/and when sparse experimental data are available. The model responds correctly to sequence mutations and could be used at early stages of a computer aided protein design and protein redesign. Computational speed, associated with the discrete structure of the model, enables studies of the long time dynamics of polypeptides and proteins and quite detailed theoretical studies of thermodynamics of nontrivial protein models.

Wydawca

-

Rocznik

Tom

44

Numer

3

Opis fizyczny

p.389-422,fig.

Twórcy

autor
  • University of Warsaw, L.Pasteura 1, 02-093 Warsaw, Poland; E-mail: Kolinski@chem.uw.edu.pl
autor

Bibliografia

  • 1. Creighton, T.E. (1990) Protein folding. Rio- ehem. J. 270, 131-146.
  • 2. Creighton, T.E. (1993) Proteins: Structures and Molecular Properties. W.H. Freeman and Company, New York.
  • 3. Davies, D.R. & Metzger, H. (1983) Structural basis of antibody function. Annu. Rev. Immu­nol. 1, 87-117.
  • 4. Fersht, A. (1984) Enzyme Structure and Mechanism.. W.H. Freeman, New York.
  • 5. Branden, C. & Tooze, J. (1991) Introduction to Protein Structure. Garland Publishing Inc., New York, London.
  • 6. McKusick, V.A. (1991) Current trends in map­ping human genes. FASER J. 5, 12-20.
  • 7. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Jr., Brice, M.D., Rodgers, J.R., Kennard, O., Simanouchi, T. & Tasumi, M. (1977) The protein data bank: A computer- based archival file for macromolecular struc­tures. J. Mol. Riol. 112, 535-542.
  • 8. PDB (1995) Quarterly Newsletter, No. 71, January 1995.
  • 9. Haliwell, J.R. (1992) Macromolecular Crys­tallography. Cambridge University Press, Cambridge.
  • 10. Doolittle, R.F. (1981) Similar amino acid se­quences: Chance or common ancestry? Science 214, 149-159.
  • 11. Wutrich, K. (1986) NMR of Proteins and Nu­cleic Acids. J. Wiley, New York.
  • 12. Kaptein, R.t Boelens, R., Scheek, R.M. & van Gunsteren, W.F. (1988) Protein structures from NMR. Biochemistry 27, 5389-5395.
  • 13. Clore, G.M., Robien, M.A. & Gronenbom, A.M. (1993) Exploring the limits of precision and accuracy of protein structures deter­mined by nuclear magnetic resonance spec­troscopy. J. Mol. Biol. 231, 82-102.
  • 14. Wright, P.E., Dyson, H.J. & Lerner, R.A. (1988) Conformation of peptide fragments of proteins in aqueous solution: Implications for initiation of protein folding. Biochemistry 27, 7167-7175.
  • 15. Brunger. A.T. & Karplus, M. (1991) Molecular dynamics simulations with experimental re­straints. Acc. Chem. Res. 24, 54-61.
  • 16. Meirovitch, H., Vasquez, M. & Scheraga, H.A. (1988) Stability of polypeptide conformational states. II. Folding of a polypeptide chain by the scanning simulation method, and calcula­tion of the free energy of the statistical coil. Biopolymers 27, 1189-1204.
  • 17. Meirovitch, H. & Meirovitch, E. (1996) New theoretical methodology for elucidating the solution structure of peptides from NMR data. 3. Solvation effects. J. Phys. Chem. 100, 5123-5133.
  • 18. DeLisi. C. (1988) Computers in molecular bi­ology: Current applications and emerging trends. Science 240, 47-52.
  • 19. Karplus, M. & Petsko, G.A. (1990) Molecular dynamics simulations in biology. Nature 347, 631-639.
  • 20. Skolnick, J. & Kolinski, A. (1997) Protein Modeling; in Encyclopedia of Computational Chemistry (Rauge Schleyer, P., Allinger, N.L.,Clark, T., Gasteiger, J., Kollman, P. A., Schae- fer, H.F. Ill, eds.) John Wiley & Sons, London, New York.
  • 21. Brooks, C.L. III. (1993) Molecular simulations of peptide and protein unfolding: In quest of a molten globule. Curr. Opin. Struct. Biol. 3, 92-98.
  • 22. Brooks, C.L. III., Karplus, M. & Pettitt, B.M. (1988) Protein: A theoretical perspective of dynamics, structure, and thermodynamics. Adv. Chem. Phys. 71, 1-259.
  • 23. Bruccoleri, R.E. & Karplus, M. (1987) Predic­tion of the folding of short polypeptide seg­ments by uniform conformational sampling. Biopolymers 26, 137-168.
  • 24. Elber, R. & Karplus, M. (1987) Multiple con­formational states of proteins: A molecular dynamics analysis of myoglobin. Science 235, 318-321.
  • 25. Elofsson, A. & Nilsson, L. (1993) How consis­tent are molecular dynamics simulations? Comparing structure and dynamics in re­duced and oxidized Escherichia, coli thiore- doxin. J. Mol. Biol. 223, 766-780.
  • 26. Bryngelson, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. (1995) Funnels, pathways and the energy landscape of protein folding: A synthesis. Proteins 21, 167-195.
  • 27. Zwanzig, R., Szabo, A. & Bagchi, B. (1992) Levinthal's paradox. Proc. Natl. Acad. Sci. U.S.A. 89, 20-22.
  • 28. Anfinsen, C.B. & Scheraga, H.A. (1975) Ex­perimental and theoretical aspects of protein folding. Adv. Prot. Chem. 29, 205-300.
  • 29. DeBolt, S. & Skolnick, J. (1996) Evaluation of atomic level mean force potentials via inverse folding and inverse refinement of protein structures: Atomic burial position and pair- wise nonbonded interactions. Protein Eng. 9, 637-655.
  • 30. Levitt, M. & Warshel, A. (1975) Computer simulation of protein folding. Nature 253, 694-698.
  • 31. Levitt, M. (1975) A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104, 59-107.
  • 32. Kuntz, I.D., Grippen, G.M., Kollman, P.A. & Kimelman, D. (1976) Calculation of protein tertiary structure. J. Mol. Biol. 106,983-994.
  • 33. Dill, K.A., Bromberg, S., Yue, K., Fiebig, K.M., Yee, D.P., Thomas, P.D. & Chan, H.S. (1995) Principles of protein folding — A perspective from simple exact models. Protein Sei. 4, 561-602.
  • 34. Skolnick, J. & Kolinski, A. (1989) Computer simulations of globular protein folding and tertiary structure. Annu. Rev. Phys. Chem. 40, 207-235.
  • 35. Levitt, M. (1991) Protein folding. Curr. Opin. Struct. Biol. 1, 224-229.
  • 36. Kolinski, A., Milik, M., Rycombel, J. & Skol­nick, J. (1995) A reduced model of short range interactions in polypeptide chains. J. Chem. Phys. 103, 4312-4323.
  • 37. Karplus, M. & Shakhnovich, E. (1992) Ther­modynamics of protein folding; in Protein Folding (Creighton, T.E., ed.) pp. 127-196, W.H. Freeman, New York.
  • 38. Sali, A., Shakhnovich, E. & Karplus, M. (1994) Kinetics of protein folding. A lattice model study of the requirements for folding to the native state. J. Mol. Biol. 235,1614-1636.
  • 39. Hagler, A.T. & Honig, B. (1978) On the forma­tion of protein tertiary structure on a com­puter. Proc. Natl. Acad. Sei. U.S.A. 75, 554-558.
  • 40. Covell, D.G. (1992) Folding protein a-carbon chains into compact forms by Monte Carlo methods. Proteins 14, 409-420.
  • 41. Wilson, C. & Doniach, S. (1989) A computer model to dynamically simulated protein fold­ing: Studies with crambin. Proteins 6, 193-209.
  • 42. Grippen, G.M. (1991) Prediction of protein folding from amino acid sequence over dis­crete conformation spaces. Biochemistry 30, 4232-4237.
  • 43. Sun, S. (1993) Reduced representation model of protein structure prediction: Statistical po­tential and genetic algorithms. Protein Sei. 2, 762-785.
  • 44. Kolinski, A. & Skolnick, J. (1996) lattice Models of Protein Folding, Dynamics and Thermodynamics. R.G. Landes, Austin, Texas.
  • 45. Kolinski, A., Skolnick, J. & Yaris, R. (1986) The collapse transition of semiflexible poly­mers. A Monte Carlo simulation of a model system. J. Chem. Phys. 85, 3585-3597.
  • 46. Kolinski, A., Skolnick, J. & Yaris, R. (1987) Monte Carlo studies on equilibrium globular protein folding. I. Homopolymeric lattice mod­els of ß-barrel proteins. Biopolymers 26, 937-962.
  • 47. Chan, II.S. & Dill, K.A. (1989) Compact poly­mers. Macromolecules 22, 4559—4573.
  • 48. Chan, H.S. & Dill, K.A. (1991) "Sequence space soup" of proteins and copolymers. J. Chem. Phys. 95, 3775-3787.
  • 49. Chan, H.S. & Dill, K.A. (1990) Origins of structure in globular proteins. Pnx:. Natl. Acad. Sei. U.S.A. 87, 638S-6392.
  • 50. Skolnick. J.. Kolinski, A. & Yaris, R. (1988) Monte Carlo simulations of the folding of (5-barrel globular proteins. Proc. Natl. Acad. Sei. U.S.A. 85, 5057-6063.
  • 51. Skolnick, J., Kolinski, A. & Yaris, R. (1989) Monte Carlo studies on equilibrium globular protein folding. II. ß-Barrel globular protein models. Biopolymers 28, 1059-1095.
  • 52. Skolnick, J., Kolinski, A. & Yaris, R. (1989) Dynamic Monte Carlo study of a six stranded Greek key globular protein. Proc. Natl. Acad. Sei. U.S.A. 86, 1229-1233.
  • 53. Skolnick, J., Kolinski, A. & Sikorski, A. (1990) Dynamic Monte Carlo simulations of globular protein and structure. Chemical Design Auto­mation News 5, 1-20.
  • 54. Sikorski, A. & Skolnick, J. (1989) Monte Carlo studies on equilibrium globular protein fold­ing. III. The four helix bundle. Biopolymers 28, 1097-1113.
  • 55. Sikorski, A. & Skolnick, J. (1989) Monte Carlo simulation of equilibrium globular protein folding. a-Helical bundles with long loops. Proc. Natl. Acad. Sei. U.S.A. 86, 2668-2672.Sikorski, A. & Skolnick, J. (1990) Dynamic Monte Carlo simulations of globular protein folding/unfolding pathways. II. a-Helical mo­tifs. J. Mol. Biol 212, 819-836.
  • 56. Sikorski. A. & Skolnick, J. (1990) Dynamic Monte Carlo simulations of globular protein folding model studies of in vivo assembly of four helix bundles and four member f3-barrels. J. Mol. Biol. 215, 183-198.
  • 57. Dill, K.A. (1993) Folding Proteins: Finding a needle in a haystack. Curr. Biol. 3, 99-103.
  • 58. Sali, A., Shakhnovich, E. & Karplus, M. (1994) How does a protein fold? Nature 369, 248-251.
  • 59. Shakhnovich, E.I. & Finkelstein, A.V. (1989) Theory of cooperative transitions in protein molecules. I. Why denaturation of globular protein is a first-order phase transition. Biopolymers 28, 1667-1680.
  • 60. Shakhnovich, E.I. & Gutin, A.M. (1989) For­mation of unique structure in a polypeptide chain. Biophys. Chem. 34, 187-199.
  • 61. Shakhnovich, E., Farztdinov, G. & Gutin, A.M. (1991) Protein folding bottlenecks: A lattice Monte Carlo simulation. Phys. Rev. Lett. 67, 1665-1668.
  • 62. Shakhnovich, E.I. & Gutin, A.M. (1993) Engi­neering of stable and fast-folding sequences of model proteins. Proc. Natl. Acad. Sci. U.S.A. 90, 7195-7199.
  • 63. Shakhnovich, E.I. (1994) Proteins with se­lected sequences fold into unique native con­formations. Phys. Rev. Lett. 72, 3907-3910.
  • 64. Socci, N.D. & Onuchic, J.N. (1994) Folding kinetics of protein-like heteropolymers. J. Chem. Phys. 100, 1519-1528.
  • 65. Lau, K.F. & Dill, K.A. (1989) A lattice statis­tical mechanics model of the conformational and sequence space of proteins. Macromole- cules 22, 3986-3997.
  • 66. Brower, R.C., Vasmatiz, G., Silverman, M. & DeLisi, C. (1993) Exhaustive conformational search and simulated annealing for models of lattice peptides. Biopolymers 33, 329-334.
  • 67. Camacho, C.J. &Thirumalai, D. (1993) Kinet­ics and thermodynamics of folding in model proteins. Proc. Natl. Acad. Sci. U.S.A. 90, 6369-6372.
  • 68. Onuchic, J.N., Wolynes, P.G., Luthey- Schulten, Z. & Socci, N.D. (1995) Toward an outline of the topography of a realistic protein- folding funnel. Proc. Natl. Acad. Sci. U.S.A. 92, 2626-3630.
  • 69. Kolinski, A., Milik, M. & Skolnick, J. (1991) Static and dynamic properties of a new lattice model of polypeptide chain. J. Chem. Phys. 94, 3978-3985.
  • 70. Kolinski, A. & Skolnick, J. (1992) Discretized model of proteins. I. Monte Carlo study of cooperativity in homopolypeptides. J. Phys. Chem. 97, 9412-9426.
  • 71. Kolinski, A., Godzik, A. & Skolnick, J. (1993) A general method for the prediction of the three dimensional structure and folding path­way of globular proteins. Application to de­signed helical proteins. J. Chem. Phys. 98, 7420-7433.
  • 72. Kolinski, A. & Skolnick, J. (1994) Monte Carlo simulations of protein folding. I. lattice model and interaction scheme. Proteins 18, 338-352.
  • 73. Kolinski, A. & Skolnick, J. (1994) Monte Carlo simulations of protein folding. II. Application to protein A, ROP, and crambin. Proteins 18, 353-366.
  • 74. Kolinski, A., Galazka, W. & Skolnick, J. (1995) Computer design of idealized p-motifs. J. Chem. Phys. 103, 10286-10297.
  • 75. Godzik, A., Kolinski, A. & Skolnick, J. (1993) Lattice representation of globular proteins: How good are they? J. Comput. Chem. 14, 1194-1202.
  • 76. Rykunov, D.S., Reva, B.A. & Finkelstein, A.V. (1995) Accurate general method for lattice approximation of three-dimensional struc­ture of a chain molecule. Proteins 22,100-109.
  • 77. Kolinski, A., Galazka, W. & Skolnick. J. (1996) On the origin of the cooperativity of protein folding. Implications from model simulations. Proteins 26, 271-287.
  • 79. Godzik, A., Kolinski, A. & Skolnick, J. (1995) Are proteins ideal mixtures of amino acids? Analysis of energy parameter sets. Protein Sei. 4,2107-2117.
  • 80. Skolnick, J., Jaroszewski, L., Koliński, A. & Godzik, A. (1997) Derivation and testing of pair potentials for protein folding. Beyond the quasichemical approximation. Protein Eng. (in press).
  • 81. Godzik, A., Skolnick, J. & Koliński, A. (1993) Regularities in interaction patterns of globu­lar proteins. Protein Eng. 6, 801-810.
  • 82. Milik, M., Koliński, A. & Skolnick, J. (1995) Neural network system for the evaluation of side chain packing in protein structures. Pro­tein Eng. 8, 225-236.
  • 83. Skolnick, J.t Koliński, A., Brooks, C.L. Ill, Godzik, A. & Rcy, A. (1993) A method for prediction of protein structure from sequence. Curr. Biol. 3, 414-423.
  • 84. Godzik, A., Koliński, A. & Skolnick, J. (1993) De novo and inverse folding predictions of protein structure and dynamics. J. Comput. Aided Mol. Design 7, 397-438.
  • 85. Vieth, M., Koliński, A., Brooks, C.L. III. & Skolnick, J. (1994) Prediction of the folding pathways and structure of the GCN4 leucine zipper. J. Mol. Biol. 237, 361-367.
  • 86. Vieth, M., Koliński, A., Brooks, C.L. III. & Skolnick, J. (1995) Prediction of the quater­nary structure of coiled coils. Application to mutants of the GCN4 leucine zipper. J. Mol. Biol. 251, 448-467.
  • 87. Vieth, M., Koliński, A. & Skolnick, J. (1996) Method for prediction the state of association of discretized protein models. Application to leucine zippers. Biochemistry 35, 955-967.
  • 88. Olszewski, K.A., Koliński, A. & Skolnick, J. (1996) Does a backwardly read sequence have a unique native state? Protein Eng. 9, 5-14.
  • 89. Olszewski, K.A., Koliński, A. & Skolnick, J. (1996) Folding simulations and computer re­design of protein A three helix bundle motifs. Proteins 25, 286-299.
  • 90. Ortiz, A.R., Hu, W.-P., Koliński, A. & Skol­nick, J. (1997) Method for low resolution pre­diction of small protein tertiary structure. J. Mol. Graphics, (in press).
  • 91. Fogolari, F., Esposito, G., Viglino, P. & Cat- tarinussi, S. (1996) Modeling of polypeptide chains as Ca chains, Cc* chains with Cp, and Ca chains with ellipsoidal lateral chains. Bio- phys. J. 70, 1183-1197.
  • 92. Wallqvist, A. & Ullner, M. (1994) A simpli­fied amino acid potential for use in structure prediction of proteins. Proteins 18, 267-289.
  • 93. Miyazawa, S. & Jernigan, R.L. (1985) Esti­mation of effective interresidue contact ener­gies from protein crystal structures: Quasi- chemical approximation. Macromolecules 18, 534-552.
  • 94. Lee, B., Kurochkina, N. & Kang, H.S. (1996) Protein folding by a biased Monte Carlo pro­cedure in the dihedral angle space. FASEB J. 10, 119-125.
  • 95. Hoffmann, D. & Knapp, E.W. (1996) Polypep­tide folding with off-lattice dynamics: The method. Eur. Biophys. J. 24, 387-403.
  • 96. Honeycutt, J.D. & Thirumalai, D. (1990) Me- tastability of the folded states of globular proteins. Proc. Natl. Acad. Sci. U.S.A. 87, 3526-3529.
  • 97. Garrett, D.G. & Kastella, K. (1992) New results on protein folding from simulated annealing. J. Am. Chem. Soc. 114, 6555- -6556.
  • 98. Knapp, E.W. (1992) Long time dynamics of a polymer with rigid body monomer unit relat­ing to a protein model: Comparison with the Rouse model. J. Comput. Chem. 13,793-798.
  • 99. Rey, A. & Skolnick, J. (1991) Comparison of lattice Monte Carlo dynamics and Brownian dynamics folding pathways of a-helical hair­pins. Chem. Phys. 158, 199-219.
  • 100. Rey, A. & Skolnick, J. (1993) Computer mod­eling and folding of four-helix bundles. Pro­teins 16, 8-28.
  • 101. Guo, Z. & Thirumalai, D. (1995) Kinetics of protein folding: Nucleation mechanism, time scales, and pathways. Biopolymers 36, 83- -102.
  • 102. Zhou, Y., Hall, C.K. & Karplus, M. (1996) First-order disorder-to order transition in an isolated homopolymer model. Phys. Rev. Utt. 77, 2822-2825.
  • 103. Hoffmann, D. & Knapp, E.W. (1996) Protein dynamics with off-lattice Monte Carlo moves. Phys. Rev. E 53, 4221-4224.
  • 104. Rabow, A.A. & Scheraga, H.A. (1996) Im­proved genetic algorithm for protein folding problem by use of a Cartesian combination operator. Protein Sei. 5, 1800-1815.
  • 105. Kolinski, A., Skolnick, J. & Yaris, R. (1987) Dynamic Monte Carlo study of the conforma­tional properties of long flexible polymers. Macromolecules 20, 438-440.
  • 106. Kolinski, A. & Skolnick, J. (1986) Monte Carlo simulations on an equilibrium globular protein folding model. Proc. Natl. Acad. Sei. U.S.A. 83, 7267-7271.
  • 107.Skolnick, J. & Kolinski, A. (1989) Dynamic Monte Carlo simulations of globular protein folding/unfolding pathways. I. Six member, Greek key ß-barrels. J. Mol. Biol. 212, 787- -817.
  • 108.Skolnick, J. & Kolinski, A. (1991) Dynamic Monte Carlo simulations of a new lattice model of globular protein folding, structure, and dynamics. J. Mol. Biol. 221, 499-531.
  • 109. Hao, M.-H. & Scheraga, H.A. (1994) Monte Carlo simulations of a first-order transition for protein folding. J. Phys. Chem. 98, 4940—4948.
  • 110. Hao, M.-H. & Scheraga, H.A. (1994) Statisti­cal thermodynamics of protein folding: Se­quence dependence. J. Phys. Chem. 98, 9882-9893.
  • 111. Hao, M.-H. & Scheraga, H.A. (1995)Statisti­cal thermodynamics of protein folding: Com­parison of mean-field theory with Monte Carlo simulations. J. Chem. Phys. 102, 1334-1348.
  • 112. O'Toole, E., Venkataramani, R. & Panagio- topoulous, A.Z. (1995) Simple lattice model of proteins directional bonding and struc­tural solvent. AIChE J. 41, 954-958.
  • 113. Galzitskaya, O.V. & Finkelstein. A.V. (1994) Folding of chains with random and edited sequences: Similarities and differences. Pro­tein Eng. 8, 883-892.
  • 114. Dinner, A.R., Sali, A. & Karplus, M. (1996) The folding mechanism of larger proteins: Role of native structure. Proc. Natl. Acad. Sei. U.S.A. 93, 8356-8361.
  • 115. Chan, U.S. & Dill, K.A. (1994) Transition states and folding dynamics of proteins and heteropolymers. J. Chem. Phys 100, 9238- -9257.
  • 116. OToole, E.M. & Panagiotopoulos, A.Z. (1992) Monte Carlo simulation of folding transitions of simple model proteins using a chain growth algorithm. J. Chem. Phys. 97, 8644- -8652.
  • 117. Hao, M.-H. & Scheraga, H.A. (1996) How optimization of potential functions affects protein folding. Proc. Natl. Acad. Sci. U.S.A. 93, 4984-4989.
  • 118.Socci, N.D., Onuchic, J.N. & Wolynes, P.G. (1996) Diffusive dynamics of the reaction coordinate for protein folding funnels. J. Chem. Phys. 104, 5860-5868.
  • 119. Bryngelson, J.D. (1994) When is a potential accurate enough for structure prediction? Theory and application to a random hetero- polymer model of protein folding. J. Chem. Phys. 100, 6038-6045.
  • 120. Li, H., Helling. R., Tang, C. & Wingreen, N. (1996) Emergence of preferred structures in a simple model of protein folding. Science 273, 666-669.
  • 121. Beutler, T.C. & Dill, K.A. (1996) A fast con­formational search strategy for finding low energy structures of model proteins. Protein Sci. 5, 2037-2043.
  • 122. Hao, M.-H. & Scheraga, H.A. (1996 > Optimiz­ing potential functions for protein folding. J. Phys. Chem. 100, 14540-14548.
  • 123. Yue, K., Fiebig, K.M., Thomas, P.D., Chan, U.S., Shakhnovich, E.I. & Dill, K.A. (1995) A test of lattice protein folding algorithms. Proc. Natl. Acad. Sci. U.S.A. 92, 325-329.
  • 124. Go, N. & Taketomi, H. (1978) Respective roles of short- and long-range interactions in protein folding. Proc. Natl. Acad. Sci. U.S.A. 75, 559-563.
  • 125. Go, N., Abe, H., Mizuno, H. & Taketomi, H. (eds.) (1980) Protein Folding. Elsevier/ /North Holland, Amsterdam.
  • 126. Taketomi, H., Kano, F. & Go, N. (1988) The effect of amino acid substitution on protein folding and unfolding transition studied by computer simulation. Biopolymers 27, 527- -559.
  • 127. Taketomi, H., Ueda, Y. & Go, N. (1988) Stud­ies of protein folding, unfolding and fluctua­tions by computer simulations. Int. J. Pept. Protein Res. 7, 445-149.
  • 128. Ueda, Y., Taketomi, H. & Go, N. (1978) Stud­ies on protein folding, unfolding, and fluctua­tions by computer simulation. II. A three-di­mensional lattice model of lysozyme. Biopo- lymers 17, 1531-1548.
  • 129. Krigbaum, W.R. & Lin, S.F. (1982) Monte Carlo simulation of protein folding using a lattice model. Macromolecules 15, 1135- -1145.
  • 130. Dashevskii, V.G. (1980) Lattice model of three-dimensional structure of globular pro­teins. Molekulyarnaya Biologiya (Transla­tion from Russian) 14, 105-117.
  • 131.Covell, D.G. & Jernigan, R.L. (1990) Confor­mations of folded proteins in restricted spaces. Biochemistry 29, 3287-3294.
  • 132. Hinds, DA. & Levitt, M. (1992) A lattice model for protein structure prediction at low resolution. Proc. Natl. Acad. Sci. U.S.A. 89, 2536-2540.
  • 133. Skolnick, J. & Kolinski, A. (1990) Simula­tions of the folding of a globular protein. Science 250, 1121-1125.
  • 134. Godzik, A., Skolnick, J. & Kolinski, A. (1992) Simulations of the folding pathway of TIM type cx/(i barrel proteins. Proc. Natl. Acad. Sci. U.S.A. 89, 2629-2633.
  • 135. Rey, A. & Skolnick, J. (1992) Efficient algo­rithm for the reconstruction of a protein backbone from the a-carbon coordinates. J. Comput. Chem. 13, 443-456.
  • 136. Milik, M., Kolinski, A. & Skolnick, J. (1997) An algorithm for rapid reconstruction of a protein backbone from alpha carbon coordi­nates. J. Comput. Chem. 18, 80-85.
  • 137.Orwoll, R.A. & Stockmayer, W.H. (1969) Sto­chastic models for chain dynamics. Adv. Chem. Phys. 15, 305-324.
  • 138. Baumgartner, A. (1984) Simulation of poly­mer motion. Annu. Rev. Phys. Chem. 35, 419-435.
  • 139. Kolinski, A., Skolnick, J. & Yaris, R. (1987) Does reptation describe the dynamics of en­tangled, finite length polymer system? A model simulation. J. Chem. Phys. 86, 1567- -1585.
  • 140. Kolinski, A., Skolnick, J. & Yaris, R. (1987) Monte Carlo studies on the long time dy­namic properties of dense cubic lattice mul- tichain systems. I. The homopolymeric melt. J. Chem. Phys. 86, 7164-7173.
  • 141.Kolinski, A., Skolnick, J. & Yaris, R. (1987) Monte Carlo studies on the long time dy­namic properties of dense cubic lattice mul­tichain systems. II. Probe polymer in a ma­trix of different degrees of polymerization. J. Chem. Phys. 86, 7174-7180.
  • 142.Skolnick, J. & Kolinski, A. (1990) Dynamics of dense polymer systems: Computer simula­tions and analytic theories. Adv. Chem. Physics 78, 223-278.
  • 143. Metropolis, N., Rosenbluth, A.W., Rosen- bluth, M.N., Teller, A.H. & Teller, E. (1953) Equation of state calculations by fast com­puting machines. J. Chem. Phys. 51, 1087-1092.
  • 144. Zwanzig, R. (1974) Theoretical basis for the Rouse-Zimm model in polymer solution dy­namics. J. Chem. Phys. 60, 2717-2720.
  • 145. Kyte, J. & Doolittle, R.F. (1982) A simple method for displaying the hydropathic char­acter of protein. J. Mol. Riol. 157, 105-132.
  • 146. Anfinsen, C.B. (1973) Principles that govern the folding of protein chains. Science 181, 223-230.
  • 147. Finkelstein, A.V., Badretdinov, A.Y. & Gu- tin, A.M. (1996) Why do protein architecture have Boltzmann-like statistics? Proteins 23, 142-150.
  • 148. Levitt, M. & Greer, J. (1977) Automatic iden­tification of secondary structure in globular proteins. J. Mol. Biol. 114, 181-293.
  • 149. Kabsch, W. & Sander, C. (1983) Dictionary of protein secondary structure: Pattern rec­ognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637.
  • 150. Abad-Zapatero, C. & Lin, C.T. (1990) Statis­tical descriptors for the size and shape of globular proteins. Biopolymers 29, 1745-1754.
  • 151. Edelman, J. (1992) Pair distribution function in small systems: Implication for protein folding. Biopolymers 21, 3-10.
  • 152. 152.Skolnick, J. & Kolinski, A. (1996) Monte Carlo lattice dynamics and prediction of pro­tein folds; in Computer Simulations of Bio- molecular Systems. Theoretical and Experi­mental Studies (van Gunsteren, W.F., We- iner, P.K. & Wilkinson, A.J., eds.) ESCOM Science Publ., The Netherlands.
  • 153. Godzik, A., Skolnick, J. & Kolinski, A. (1992) A topology fingerprint approach to the in­verse folding problem. J. Mol. Biol 227, 227-238.
  • 154. Host. B. & Sander. C. (1993) Prediction of secondary structure at better than 70% accu­racy. J. Mol. Biol. 232, 584-599.
  • 155. Rost, B. & Sander, C. (1994) Combining evo­lutionary information and neural networks to predict protein secondary structure. Pro­teins 19, 55-72.
  • 156. Rost, B. & Sander. C. (1996) Progress of ID protein structure prediction at last. Proteins 23, 295-300.
  • 157. Vieth. M., Kolinski, A., Skolnick, J. & Sikor- ski, A. (1992) Prediction of protein secondary structure by neural networks: Encoding short and long range patterns of amino acid packing. Acta Biochim. Polon. 39, 378-392.
  • 158. Vieth. M. & Kolinski, A. (1991) Prediction of protein secondary structure by an enhanced neural network. Acta Biochim. Polon. 38, 335-351.
  • 159. Handel, T. & DeGrado, W.F. (1992) A de­signed 4-helical bundle shows characteristics of both molten globule and native state. Bio­physical J. 61, A265.
  • 160. Raleigh, D P. & DeGrado, W.F. (1992) A De Novo designed protein shows a thermally induced transition from a native to a molten globule like state. J. Am. Chem. Soc. 114, 10079-10081.
  • 161. Raleigh, D.P., Betz, S.F. & DeGrado, W.F. (1995) A de novo designed protein mimics the native state of natural proteins. J. Am. Chem. Soc. 117, 7558-7559.
  • 162. Betz, S.F., Raleigh, D.P. & DeGrado, W.F. (1993) De novo protein design: From molten globules to native-like states. Curr. Opin. Struct. Biol. 3, 601-610.
  • 163. Betz, S.F., Bryson, J.W. & DeGrado, W.F. (1995) Native-like and structurally charac­terized designed tx-helical bundles. Curr. Biol. 5, 457—463.
  • 164. Sander, C. (ed.) (1986) Protein Design Exer­cises 86. EMBL, Heidelberg.
  • 165. Banner. D.W., Kokkinidis, M. & Tsernoglou, D. (1987) Structure of the ColEl rop protein at 1.7 A resolution. J. Mol. Biol. 196, 657- -675.
  • 166. Gouda, H., Torigoe, H., Saito, A., Sato, M., Arata, Y. & Schimada, I. (1992) Three-di­mensional solution structure of the B-do- main of Staphylococcal Protein A: Compari­sons of the solution and crystal structures. Biochemistry 40, 9665-9672.
  • 167. Hendrickson, W.A. & Teeter, M.M. (1981) Structure of the hydrophobic protein cram- bin. Nature 290, 107-109.
  • 168. Alber, T. (1992) Structure of the leucine zip­per. Curr. Opin. Genet. Develop. 2, 205-210.
  • 169. Harbury. P.B., Zhang, T., Kim, P.S. & Alber, T. (1993) A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401-1407.
  • 170. Harbury, P.B., Kim, P.S. & Alber, T. (1994) Crystal structure of an isoleucine-zipper trimer. Nature 371, 80-83.
  • 171. Brooks, B.R., Bruccoleri, R., Olafson, B., States, D., Swaminathan, S. & Karplus, M. (1983) CHARMM: A program for macro- molecular energy minimization, and molecu­lar dynamics. J. Comp. Chem. 4, 187-217.
  • 172.Skolnick, J., Kolinski, A. & Ortiz, A.R. (1997) MONSSTER: A method for folding globular proteins with a small number of distance restraints. J. Mol. Biol. 265, 217-241.
  • 173.Gronenborn, A., Filpula, D.R., Essig, N.Z., Achari, A., Whitlow, M., Wingfield, P.T. & Clore, G.M. (1991) A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253, 657-660.
  • 174.Leijonmarck, M. & Liljas, A. (1987) Struc­ture of the C-terminal domain of ribosomal protein 17/L12 from Escherichia coli at 1.7 A resolution. J. Mol. Biol. 195, 555-579.
  • 175.Guss, J.M. & Freeman, H.C. (1983) Struc­ture of oxidized poplar plastocyanin at 1.6 A resolution. J. Mol. Biol. 169, 521-563.
  • 176.Katti, S.K., LeMaster, D.M. & Eklund, H. (1990) Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J. Mol. Biol. 212, 167-184.
  • 177.Smith, W.W., Burnett, R.M., Darling, G.D. & Ludwig, M.L. (1977) Structure of semiqui- none form offlavodoxin from Clostridium hp. Extension of 1.8 À resolution and some com­parisons of the oxidized state. J. Mol. Biol. 117, 195-225.
  • 178. Bolognesi, M., Onesti, S., Gatti, G., Coda, A., Ascenzi, P. & Brunori, M. (1989) Aplysia limacina myoglobin. Crystallographic analy­sis at 1.6 Â resolution. J. Mol. Biol. 205, 529-544.
  • 179.Smith-Brown, M.J., Kominos, D. & Levy, R.M. (1993) Global folding of proteins using a limited number of distance restraints. Pro­tein Eng. 6, 605-614.
  • 180. Aszodi, A., Gradwell, M.J. & Taylor, W.R. (1995) Global fold determination from a small number of distance restraints. J. Mol. Biol. 251, 308-326.
  • 181. Bowie, J.U., Luethy, R. & Eisenberg, D. (1991) A method to identify protein se­quences that fold into a known three dimen­sional structure. Science 253, 164-170.
  • 182.Jones, D.T., Taylor, W.R. & Thornton, J.M. (1992) A new approach to protein fold recog­nition. Nature 358, 86-89.
  • 183. Luethy, R„ Bowie, J.U. & Eisenberg, D. (1992) Assessment of protein models with three dimensional profiles. Nature 356, 83-85.
  • 184. Madej, T., Gibrat, J.F. & Bryant, S.H. (1995) Threading a database of protein scores. Pro­teins 23, 356-369.
  • 185. Thornton, J.M., Flores, T P.. Jones, D.T. & Swindells, M.B. (1991) Prediction of progress at last. Nature 354, 105-106.
  • 186. Thomas, D.J., Casari, G. & Sander, C. (1996) The prediction of protein contacts from mul­tiple sequence alignments. Protein Eng. 9, 941-948.
  • 187. Gobel, U., Sander, C., Schneider, R. & Valen­cia, A. (1994) Correlated mutations and resi­due contacts in proteins. Proteins 18, 309-317.
  • 188. Kolinski, A., Skolnick, J. & Godzik, A. ( 1997) A method for the prediction of surface "TJn- turns and transglobular connections in small proteins. Proteins (in press).
  • 189. Ponder, J.W. & Richards, F.M. (1987) Terti­ary templates for proteins. Use of packing criteria in the enumeration of allowed se­quences for different structural classes. J. Mol. Biol. 193, 775-791.
  • 190. Prędki, P.F. & Regan. L.R. (1995) Redesign­ing the topology of a four helix bundle pro­tein: Monomeric Rop. Biochemistry 34, 9834-9839.
  • 191. DeGrado, W.F., Wasserman, Z.R. & Lear, J.D. (1989) Protein design, a minimalist ap­proach. Science 243, 622-628.
  • 192. Skolnick, J., Kolinski, A. & Godzik, A. (1993) From independent modules to molten glob­ules: Observations on the nature of protein folding intermediates. Proc. Natl. Acad. Sci. U.S.A. 90, 2099-2100.
  • 193. Dyson, J.H. & Wright, P.E. (1993) Peptide conformation and protein folding. Curr. Biol. 3, 60-65.
  • 194. Eliezer, D., Jennings, P.A., Wright, P.E.. Doniach, S., Hodgson, K.O. & Tsuruta, H. (1995) The radius of gyration of an apomyo- globin folding intermediate. Science 270, 487-488.
  • 195. Kim, P. & Baldwin, R.L. (1990) Intermedi­ates in the folding reactions of small pro­teins. Annu. Rev. Biochem. 59, 631-660.
  • 196. Baldwin, R.L. & Roder, H. (1991) Charac­terizing protein folding intermediates. Curr. Riol. I, 219-220.
  • 197. Lee, J. (1993) New Monte Carlo algorithm: Entropie sampling. Phys. Rev. Lett. 71, 211-214.
  • 198. Berg, B.A. & Neuhaus, T. (1991) Multican- onical ensemble: A new approach to simulate first-order phase transitions. Phys. Rev. I^ett. 68, 9-12.
  • 199. Hansmann, U.H.E. & Okamoto, Y. (1993) Prediction of peptide conformation by multi- canonical algorithm: New approach to the multiple minima problem.«/. Comput. Chem. 14, 1333-1338.
  • 200. Kuwajima, K. (1989) The molten globule state as a clue for understanding the folding and cooperativity of globular protein struc­ture. Proteins 6, 87-103.
  • 201. Kuwąjima, K., Mitani. M. & Sugai, S. (1989) Characterization of the critical state in pro­tein folding. Effects of guanidine hydrochlo­ride and specific Ca2+ binding on the folding kinetics of
  • 202. Ptitsyn, O.B. (1987) Protein folding: Hy­potheses and experiments. J. Protein Chem. 6, 273-293.
  • 203. Ptitsyn, O.B., Pain, R.H., Semisotnov, G.V., Zerovnik, E. & Razgulyaev, O.I. (1990) Evi- dence for a molten globule state as a general intermediate in protein folding. FEBS I^ett. 262, 20-24.
  • 204.McQuarrie, A.D. (1976) Statistical Mechan­ics. Harper & Row, New York.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-fdc44fbd-5f00-41fb-8742-d4711010b78a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.