

Władysław Chałupka, Andrzej Misiorny, Roman Rożkowski

Provenance contribution to genetic composition of progeny from outbreeding seed orchard of *Picea abies*

Abstract: The abundant flowering, observed in 2004 in a model outbreeding seed orchard established in Kórnik, Poland, promoted crossing between clones of five geographically distant populations of Norway spruce. The clones were selected from a group of ca. 1100 provenances participating in the international IUFRO 1964/68 experiment and performing best in terms of growth traits and adaptability. In the seed orchard, 91.3% of clones and 64.1% of grafts produced female and/or male strobili. Statistically significant differences between the clones were only found in the number of mature cones produced. The mean number of mature cones in individual clones was also significantly correlated with the latitude of the place of origin of maternal populations (r = 0.88, p = 0.047). The nearly equal percentages of clones representing each of the five populations in the outbreeding seed orchard (from 23.2 to 17.5%) resulted finally in the highly unequal production of full seeds by each population (from 62.9 to 0.7%). These data provide evidence to suggest that the level of genetic diversity in the progeny, expected from the number of growing clones, diverges from the level resulting from the contribution of clones to the full seed production which is an effective measure of the genetic composition of progeny. To avoid this divergence, an outbreeding seed orchard could be established with unequal proportions of clones from different provenances, considering the knowledge of their flowering phenology, and individual variation in flowering and cone production.

Additional key words: Norway spruce, genetic composition of progeny, cone yield, seed production

Address: Władysław Chałupka*, Andrzej Misiorny, Roman Rożkowski, Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, 62-035 Kórnik, Poland, *e-mail: wrchal@man.poznan.pl

Introduction

One of the main principles of seed orchard management is to promote genetic diversity in the orchard progeny. For this reason, when laying out a seed orchard, it has been common practice to use very similar or even equal initial numbers of grafts of each clone with the aim of ensuring an adequate and proportional contribution of clones to the genetic composition of the progeny. It has been found, however, that there is a great clonal variation in the production of female strobili (Eriksson et al. 1973; Skrøppa and Tutturen 1985; Kjaer 1996; Nikkanen and Ruotsalainen 2000), and nearly all seeds in Norway spruce seed orchards are frequently produced by only part of clones (ca. 25 to 50% of their total number) which thus contribute to the seed crop composition (Chałupka 1988; Misiorny and Chałupka 2006). As a consequence, the level of genetic diversity in the seed orchard progeny expected from the proportion of planted clones could be quite different from the level of genetic diversity resulting from the effective contribution of clones to the seed crop.

The aim of the present study was to test the hypothesis that the clones of each of five Norway spruce provenances make an equal maternal contribution to the genetic composition of seed crop from a model outbreeding seed orchard, by analysing the data on flowering, and cone and seed production.

Material and methods

The outbreeding seed orchard of Norway spruce (*Picea abies* (L.) Karst) was established by M. Giertych in Kórnik in 1981, based on five geographically distant populations (Fig. 1, Table 1) which proved to perform best in various countries and site conditions in terms of growth traits and adaptability among the 1095 European provenances included in the international IUFRO 1964/68 experiment (Giertych 1978). Such a model seed orchard was assumed to produce a genetically highly diverse offspring of geographically distant populations exhibiting high adaptability (Giertych 1993, 1999). The layout of the seed orchard is presented in Fig. 2, and the number of clones and grafts from each population in 2004 is shown in Table 2.

In 2004, a year of good flowering, the abundance of female flowering was estimated in early May. In mid-November, all mature cones were collected separately from each graft. Then, seeds were extracted from the cones and examined for several traits. The results were evaluated statistically using non-orthogonal and hierarchical analysis of variance.

Results

Strobili and cone bearing

As found by Misiorny and Chałupka (2006), 80.6% of all clones and 53.1% of all grafts in the outbreeding seed orchard formed female strobili in the flowering year 2004. However, the percentage of clones and grafts with mature cones, measured in November (68.0 and 36.4%, respectively; Table 3), declined as

Fig. 1. Origin of Norway spruce provenances (●) and location of outbreeding seed orchard (□)

compared to the percentage of those with female strobili in May, mostly due to the flower and/or immature cone abortion.

The abundance of cone crop for each provenance, calculated as the mean number of mature cones per graft, was positively significantly correlated with the latitude of provenance origin (Misiorny and Chałupka 2006).

Seed crop composition

The provenances showed quantitative differences in seed traits (Table 4). For most traits, the differences were statistically significant for provenances and much less significant for clones within provenances (Table 5).

In 2004, the percentages of clones representing each provenance were more or less the same, ranging from 23.2% for Serwy to 17.5% for Kolonowskie (Table 2). The percentages of clones that produced female strobili broadly mirrored those values (21.4 to 13.6%; Table 6). The production of mature cones showed a different pattern, with the percentages for three provenances (Kolonowskie – 9.7%, Istebna – 11.6%, Jasina – 8.7%) being much lower than for the other two. When the number of full seeds produced was taken into account, the picture changed dramatically: the final contribution to the seed crop composition varied widely among the provenances, from 62.9% for Serwy to 0.7% for Jasina (Table 6).

Discussion

As mentioned earlier, when planning the layout of a regular seed orchard, the same or very similar initial numbers of grafts of each clone are planted with the hope of obtaining more or less equal contribution of the clones to the genetic composition of the offspring. This was not the case, however, with our outbreeding model seed orchard of Norway spruce in the flowering year 2004. The nearly equal percentages of clones of five provenances, from 23.2 to 17.5%, used in the orchard, resulted in the highly unequal production of full seeds by the clones, with the contribution of each provenance ranging from 62.9 to 0.7% (Table 6). This demonstrates that the level of genetic diversity in seed orchard progeny, expected from the proportion of planted and cone-bearing clones of five provenances, differed substantially from the effective genetic diversity which resulted from the contribution of provenances to the final crop of full seeds. A new research project has recently been initiated to better understand the reproduction processes in the same outbreeding seed orchard by using molecular analyses.

In summary, the results obtained so far indicate that the number of full seeds produced by clones of different provenances, planted in an outbreeding seed orchard, provides an effective quantitative measure of

Table 1. Origin of five populations of Norway spruce in outbreeding seed orchard in Kórnik (after Misiorny and Chałupka 2006)

	Denvilation (management) name		Geographic location	L	Clara arreshala		
IUFRO NO.	Population (provenance) name —	latitude	longitude	altitude (m)	Clotte symbols		
0253	Serwy	N 53°50'	E 23°02'	120	04-106 to 04-129		
0266	Karnieszewice	N 53°20'	E 15°50'	150-200	04-150 to 04-170		
0293	Kolonowskie	N 50°39'	E 18°23'	150-200	04-130 to 04-149		
1045	Istebna	N 49°34'	E 18°51'	540	04-83 to 04-105		
1062	Jasina	N 48°18'	E 24°20'	800-1000	04-171 to 04-189		

Table 2. Plant material in outbreeding seed orchard in Kórnik; italics is used for percentages

Provenance	Number of clones	Number of grafts
Serwy	24	110
	23.3	24.5
Karnieszewice	21	104
	20.4	23.2
Kolonowskie	18	57
	17.5	12.7
Istebna 148–149	21	86
	20.4	19.2
Jasina	19	91
	18.4	20.3
Total	103	448
	100.0	100.0

their contribution to the genetic composition of the orchard progeny. Therefore, if an equal or close to equal contribution of provenances or clones into the genetic composition of progeny is needed, the outbreeding seed orchard could be established with unequal proportions of clones of each provenance, based on the knowledge of their flowering phenology, and on the recognised individual variation in flowering and cone production. The above suggestions may also to some extent apply to laying out a new generation of commercial seed orchards.

Acknowledgements

This study was partially financed by the grant from the General Directorate of State Forests in Warsaw, Poland. The authors thank Henryka Przybył for the laborious technical work.

Table 3. Cone	vield in outbreeding seed	l orchard in 2004 (a	after Misiorny	⁷ and Chału	pka 2006): italics i	s used for percentages
	,					

Total No. of clones	Clones with female strobili	Clones with mature cones	Total No. of grafts	Grafts with female strobili	Grafts with mature cones
103	94	70	448	238	163
100	80.6	68.0	100	53.1	36.4

Table 4. Mean provenance values of seed traits

Provenance	Lat.	Long.	Alt.	Weight of 1000 seeds (full + empty)	Weight of 1000 full seeds	% of full seeds	Mean No. of seeds per cone (full + empty)	Mean No. of full seeds per cone
Serwy	N 53°50'	E 23°02'	120	7.28	8.73	75	189.6	143.2
Karnieszewice	N 53°20'	E 15°50'	150-200	7.42	9.56	62	205.3	122.9
Kolonowskie	N 50°39'	E 18°23'	150-200	8.29	10.26	70	198.9	145.3
Istebna	N 49°34'	E 18°51'	540	7.55	9.42	68	221.1	143.4
Jasina	N 48°18'	E 24°20'	800-1000	7.81	9.15	73	113.5	98.0

Table 5. Results of ANOVA (significance levels)

Variables	Weight of 1000 seeds (full + empty)	Weight of 1000 full seeds	% of full seeds	Mean No. of seeds per cone (full + empty)	Mean No. of full seeds per cone
Provenances	0.0010	0.0412	< 0.0001	0.0004	< 0.0001
Clones in provenances	0.1306	0.2146	0.0203	0.0079	0.0052

18	17	16	15	7	<u>+</u>	13	-	1	1	5	0	DL.	c	n	o	0	٢	-	Ċ	Ø	L	C	~	1	ç	S	c	V	Ţ	-	
04- 91	38- 09	04- 159	04- 122	04-	167	04-	110	04-	153		29-	03	04-	160	04-	154	04-	107	04-	170	04-	164	31-	08	26-	16	04-	121	04-	189	33
04- 97	04- 165	04- 187	04- 119	04-	185	04- 02-	06	04-	152	04- 186			04-	157	04-	151	04-	104	04-	168	04-	162	04-	109			04-	120	04-	188	32
04- 94	04- 158	26- 04	29- 01	04-	169	04-	87	04-	150				04-	113	04-	118	04-	100	26-	00	04-	159	04-	183	26-	17	04-	102	04-	182	31
04- 164	31 - 08			04-	189	04-	155	04-	126	04- 177	04-	172	39-	03	04-	117	04-	95	04-	138	04-	66	04-	181	04-	180	04-	187	04-	179	30
04- 162	04- 108		04- 120	04-	188	04-	129	04-	124	04- 163	04-	123	31-	60	04-	86	04-	93	04-	127	04-	92	04-	176	04-	125	04-	101	04-	175	29
04- 159	04- 183	04- 116	04- 102			04-	128	04-	111	04- 180	04-	91	24-	6	04-	159	04-	122	04-	167	04-	110	04-	153	37-	16	29-	03	04-	161	28
-4- 99	04 - 181		04- 187	04-	179			04-	89	04- 125			04-	165	04-	187	04-	119	04-	171	04-	90	04-	152	04-	186	04-	174	04-	156	27
04- 92	04- 176	04- 125	04- 101	04-	175			39-	05	04- 178	04-	94	04-	158	26-	04	29-	0	04-	166	04-	87	04-	150	26-	02	04-	173	04-	113	26
04- 110	04- 153			04-	161	04-	154	04-	107	04- 140	04-	164	31-	08			04-	121	04-	189	04-	155	04-	126	04-	177	04-	172	39-	03	25
04- 90	04- 152		04- 174			04-	151	04-	103		04-	162	04-	109			04-	120	04-	188	04-	129	04-	124	04-	163	04-	123	31-	05	24
04- 87	04- 150	26- 02	04- 173	04-	112	04-	118	04-	100		04-	159	04-	183	26-	17	04-	102	04-	182	04-	128	04-	111			04-	91	24-	01	23
04- 155	04- 126		04- 172	39-	02	04-	117	04-	95	04- 138	04-	66	04-	181	04-	180	04-	187	04-	179	04-	84	04-	83	04-	125	04-	97	04-	165	22
04- 129	04- 124	04- 163		31-	05	04- 0	86	04-	93	04- 127	04-	92	04-	176	04-	125	04-	101	04-	175	04-	127	39 -	05	04-	178	04-	94	04-	158	21
04- 128	-4- 11		91 91	38-	60	04-	159	04-	122	04- 184	04-	110	04-	153	37-	16	29-	03	04-	160	04-	154	04-	106	04-	170	04-	164			20
04- 84	04- 89	04- 125		94-	165	04-	187	04-	119	04- 185	04-	6	04-	152	04-	186	04-	174	04-	156	04-	151	04-	103	04-	168	04-	162	04-	109	19
04- 127	39- 05		94- 94-	04-	158					04- 169	04-	87	04-	150			04-	173	04-	112	04-	118	04-	98	26-	07	04-	159	04-	183	18
04- 154	04- 106	04- 140	04- 164							04- 189	04-	155	04-	126			04-	172	39-	02	04-	117	04-	95	04-	138	04-	66	04-	181	17
	04- 103	04- 168	04- 162	4-	108			04-	120	04- 188	4-	129	4-	124	04-	163	04-	123	31-	60	04-	86	04-	88	04-	127	04-	92	04-	176	16
04- 118	94 98	26- 07	04- 159	94-	183	04-	116	04-	102	04 - 182	04-	128	04-	114	04-	180	04-	91	24-	0	04-	159	04-	122	04-	167	04-	110	04-	153	15
04- 117	04- 95	04- 138	99 99	04-	181	04-	180	04-	187	04- 179			4-	89	04-	125	04-	97			04-	187	04-	119	04-	171	04-	6	04-	152	14
04- 86	-4- 88	04- 127	92 92	04-	176	04-	125	04-	101	04- 175	04-	127			04-	178	04-	94	04-	158	26-	04	29-	01	04-	166	04-	87	04-	150	13
04- 159	04- 122	04- 167	-4- 110	04-	153	37-	16	29-	8	04- 160	04-	154	-4-	107	04-	170	04-	164	3 1 -	08	26-	16	04-	121	04-	189	04-	155	04-	126	12
04- 187			90 -10	04-	152	04-	186	04-	174	04- 157	04-	151	04-	104	04-	168	04-	162	04-	108			04-	120	04-	188	04-	129	04-	124	7
		04- 166	04- 87	04-	150	26- 20	02	04-	173		04-	118	4-	100			04-	159	04-	183	04-	116	04-	102	04-	182	04-	128	04-	111	10
			04- 155	04-	126			04-	172		04-	117			04-	138	04-	66	04-	181	04-	180	04-	187	04-	179	04-	84	04-	89	6
						-4-	163	04-	123		40	86	04-	93	04-	127	04-	92	04-	176	04-	125	04-	101	04-	175	04-	127	39-	05	ø
										38- 0.9	04-	159	04-	122	04-	184	04-	110	04-	153	37-	16	29-	03	04-	161	04-	154	04-	106	~
													04-	119			04-	6	04-	152	04-	186	04-	174	04-	157	04-	151	04-	103	9
																	04-	87	04-	150	26-	02	04-	173	04-	112	04-	118	04-	98	5
																			04-	126	04-	177	04-	172	39-	03	04-	117	04-	95	4
																							04-	123	31-	05	04-	86	04-	88	ŝ
																											04-	159	04-	122	2
																													04-	119	~

108

Władysław Chałupka, Andrzej Misiorny, Roman Rożkowski

Provenance	Clones with female strobili	Clones with mature cones	Clones producing seeds (full + empty)	Total No. of seeds produced (full + empty)	Total No. of full seeds produced
Serwy	21.4	21.4	20.4	50.3	62.9
Karnieszewice	18.4	16.5	16.5	35.9	20.6
Kolonowskie	13.6	9.7	7.8	3.5	5.2
Istebna	19.4	11.6	10.7	9.8	10.6
Jasina	18.4	8.7	8.7	0.5	0.7

Table 6. Provenance contribution (%) to genetic composition of outbreeding seed orchard progeny

References

- Chałupka W. 1988. Kwitnienie i zamieranie szczepów na modelowej plantacji nasiennej świerka pospolitego (*Picea abies* (L.) Karst.) w Kórniku. Arboretum Kórnickie 33: 127–157.
- Eriksson G, Jonsson A., Lindgren D. 1973. Flowering in a clone trial of *Picea abies* Karst. Studia Forestalia Suecica 110: 4–45.
- Giertych M. 1978. Plastyczność polskich ras świerka (*Picea abies* (L.) Karst.) w świetle doświadczenia IUFRO z lat 1964–1968. Arboretum Kórnickie 23: 185–206.
- Giertych M. 1993. Breeding of Norway spruce in Poland: from provenance tests to seed orchards. In: Proceedings of the IUFRO S2.02.11 Symposium "Norway Spruce Provenances and Breeding", Riga, Latvia. Rone V. (ed.), pp. 193–199.

- Giertych M. 1999. Wykorzystanie hodowlane zasobów genowych z powierzchni doświadczalnych. In: Materiały I Konferencji Leśnej "Stan i perspektywy badań z zakresu hodowli lasu", Sękocin-Las, 18–19.05.1999, pp. 125–132.
- Kjaer E. 1996. Estimation of effective population number in a *Picea abies* (Karst.) seed orchard based on flower assessment. Scandinavian Journal of Forest Research 11: 111–121.
- Misiorny A., Chałupka W. 2006. Flowering and cone bearing of *Picea abies* grafts in second-generation seed orchards. Dendrobiology 56: 51–59.
- Nikkanen T., Ruotsalainen S. 2000. Variation in flowering abundance and its impact on the genetic diversity of the seed crop in a Norway spruce seed orchard. Silva Fennica 34(3): 205–222.
- Skrøppa T., Tutturen R. 1985. Flowering in Norway spruce seed orchards. Silvae Genetica 34(1): 90–95.