PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 42 | 3 |

Tytuł artykułu

Wspolzaleznosc pomiedzy fotosynteza i dystrybucja asymilatow a tolerancja roslin na niekorzystne warunki srodowiska

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
Stress conditions affect photosynthetic productivity as well as distribution of photoassimilates. Depending on the kind of stress which may more strongly affect sink growth or the rate of photosynthesis, source - sink relationships are modified according to the general strategy: stressor avoidance or tolerance. The problem of the competition between sinks and their priority under conditions when e.g. photosynthesis or water supply are limiting factors is discussed with attention to the role of hormones.

Wydawca

-

Rocznik

Tom

42

Numer

3

Opis fizyczny

s.19-35,rys.,bibliogr.

Twórcy

autor
  • Szkola Glowna Gospodarstwa Wiejskiego, Warszawa

Bibliografia

  • [1] Bangerth F. 1989. Dominance among fruts/sinks and the search for a correlative signal. Physiol. Plant 76: 608-614.
  • [2] Bano A., Dörfling K., Bettin D., Hahn H. 1993. Abscisic acid and cytokinins as possible root-to-shoot signals in xylem sap of rice plants in drying soil. Austr. J. Plant.Physiol. 20: 109-115.
  • [3] Basu P.S., Minhas J.S. 1991. Heat tolearance and assimilate transport in different potato genotypes 1991; J. Expt. Bot 42: 861-866.
  • [4] Beck D., Sady W., Wojtaszek T. 1990. Wpływ temperatury powietrza i strefy korzeniowej na wybrane aspekty wzrostu i rozwoju pomidora. Post. Nauk Rol. 3: 39-57.
  • [5] Blackman P. G., Davies W. J. 1985. Root to shoot communication in maize plants of the effects of soil drying. J. Exp. Bot. 36: 39-48.
  • [6] Bloom A. J., Chapin III F. S., Mooney H. A., 1985. Resource limitation in plants - an economic analogy. Ann. Rev. Ecol. Syst. 16: 363-392.
  • [7] Brenner M. L. 1988. The role of hormones in photosynthate partitioning and seed filling. In: Plant hormones and their role in plant growth and development. Ed. Davies P.J. Kluwer Acad. Publ. E 12, 474-493.
  • [8] Brüggemann W., Daubom B. 1993. Long-term chilling of young tomato plants under low light III. Leaf development as reflected by photosynthesis parameters. Plant Cell Physiol. 34: 1251-1257.
  • [9] Brüggemann W., Klaucke S., Maas-Kantel K. 1994. Long-term chilling of young tomato plants under low light. Planta 194: 160-168.
  • [10] Bugbee B., White J. W. 1984. Tomato growth as affected by root zone temperature and the addition of gibberellic acid and kinetin to nutrient solutions. J. Amer. Soc. Hort. Sci. 109: 121-125.
  • [11] Caers M., Rudelsheim P., Van Onckelen H., Horemans S. 1985. Effect of heat stress on photosynthetic activity and chloroplast ultrastructure in correlation with endogenous cytokinin concentratin in maize seedlings. Plant Cell Physiol. 26: 47-52.
  • [12] Cakmak I., Hengeler C., Marschner H. 1994. Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J. Exp. Bot 45: 1251-1257.
  • [13] Cannell M. G. R., Dewar R. C. 1994. Carbon allocation in trees: Review of concepts for modelling. Advan. in Ecol. Res. 25: 59-104.
  • [14] Chandler P. M , Robertson M. 1994. Gene expresion regulated by abscisic acid and its relation to stress tolerance. Ann. Rev. Plant Physiol. Plant. Mol. Biol. 45: 113-141.
  • [15] Chapin III F. S., Schulze E. D., Mooney H. A. 1990. The ecology and economics of storage in plants. Ann. Rrev. Ecol. Syst. 21: 423-447.
  • [16] Cheikh N., Brenner M L. 1992. Regulation of key enzymes of sucrose biosynthesis in soybean leaves. Plant Physiol. 100: 1230-1237.
  • [17] Crafts-Brandrer S. J., Salvucci M. E. 1994. The Rubisco complex protein: a protein induced by fruit removal that forms a complex with ribulose-1,5-bisphosphate carboxylase/oxygenese. Planta 194: 110-116.
  • [18] Davies W. J., Tradieu F., Trejo C. L. 1994. How do chemicals signals work in plants that growin drying soil? Plant Physiol. 104: 390-414.
  • [19] Davies W. J., Zhang J. 1991. Root signals and the regulation of growth and developmentof plants in drying soil. Ann. Rev. Plant Physiol. Plant Molec. Biol. 42: 55-76.
  • [20] Dinar M, Rudich J., Zamski E. 1983. Effects of heat stress on carbon transport from tomato leaves. Ann. Bot. 51: 97-103.
  • [21] Dinar M., Rudich J. 1985. Effect ofheat stress on assimilate partitioning in tomato. Ann. Bot. 56: 239-249.
  • [22] Engels C. 1994. Effect of root and shoot meristem temperature on shoot and root dry matter partitioning and the internal concentation of nitrogen and carbohydrates in maize and wheat. Ann. Bot. 73: 211-219.
  • [23] Franceschi V. R., Giaquinta R. T. 1983. Specialized cellular arrangements in legume leaves in relation to assimilate transpsort and compartmentation: comparision of paraveinal mesophyll. Planta 159: 415-422.
  • [24] Galtier N., Foyer C. H., Huber J., Voelker T. A.,. Huber S. C. 1993. Effects of elevated sucrose-phosphate synthase activity on photosynthests, assimilate partitiomng, and growth m tomato (Lycopersicon esculentum var UC 82B). Plant Physiol. 101: 535-543.
  • [25] Gawrońska H., Dwelle R. B., Pavek J.J. 1990. Partitioning of photoassimilates by potato plants (Solanum tuberosum L.) as influenced by irradiance. Amer. Potato J. 67: 163-167.
  • [26] Gawrońska H., Thomton M. K., Dwelle R. B. 1992. Influence of heat stresson dry matter production and photoassimilate partitioning by four potato clones. Amer. Potato J. 69: 65~65.
  • [27] Geiger D. R., Servaites J. C. 1991. Carbon allocation and response to stress. 103-127. In: Response of plants to multiple stresses. ed. Mooney H. A., Winner W. E., Pell E. J., Chu E: Acad. Press.
  • [28] Gernel J., Golinowski W., Kaniuga Z. 1986. Low temperature-induced changes in chloroplast ultrastructure in relation to changes of Hill reaction activity, manganese and free fatty acid levels in chloroplasts of chilling-sensitive and chilling-resistance plants. Acta Physiol. Plant 8: 135-143.
  • [29] Goldstein R., Ferson S. 1994. Response of plants to interacting stresses (ROPIS): program rationale design and implications. J. Environ Qual. 23: 407-411.
  • [30] Grzesiuk S., Koczowska I. 1991. Fizjologiczne podstawy odporności roślin na choroby. Wyd. Akad. Rol.-Tech. Olsztyn.
  • [31] Gunasekera D., Berkowitz G.A. 1993. Use of transgenic plants with ribulose-1,5-bisphosphate carboxylase/oxygenase antisense DNA to evaluate the rate limitation of photosynthesis under water stress. Plant Physiol. 103: 629-635.
  • [32] Guy C. L., Huber J. L. A., Huber S. C. 1992. Sucrose phophate synthase and sucrose accumulation at low temperature. Plant. Physiol. 100: 502-508.
  • [33] Hall A. E. 1990. Breeding for heat tolerance - an aproach based on the whole plant physiology. Hort. Sci. 25: 17-19.
  • [34] Hall A. E. 1990. Plant adaptation to hot and dry stresses in relation to horticultural plant breeding. XXII Inter. Hort Congr. Plenary lectures. 44-48.
  • [35] Havoux M. 1992. Stress tolerance of photosystem II in vivo. Plant Physiol. 100: 424-432.
  • [36] Ho L.C. 1988. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39: 355-378.
  • [37] Huber S. C., Rogers H. H., Mowry F. L. 1984. Effects of water stress on photosynthesis and carbon partitioning in soybean (Glycine max/L.Merr) plants grown in field at different CO2 levels. Plant Physiol. 76: 244-250.
  • [38] Howarth K.J., Ougharn H. J. 1993. Gene expresion under temperature stress. New Phytol. 125: 1-26.
  • [39] Itai C., Vaadia Y. 1965. Kinetin-like activity in root exudate of water stressed sunflower plants. Physiol. Plant, 18: 941-944.
  • [40] Kalaji M. H., Pietkiewicz S. 1993. Salinity effects on plant growth and other physiological processes. Acta Physiol. Plant. 15: 89-124.
  • [41] Koda Y. 1992. The role of jasmonic acid and related compounds in the regulation of plant development. Internat. Rev. Cytol. 135: 155-199.
  • [42] Krupa Z.. Baszyński T. 1989. Environmental stresses as factors modyfying the structure of the light-harvesting chlorophyll a/b protein complex II. Phytosynthetica 23: 695-998.
  • [43] Kursanov A. L. 1984. Assimilate transport in plants. Elsevier.
  • [44] Laurence J. A., Amundson R. G., FriendA. L., Pil E. J., Temple P. J. 1994. Allocation of carbon in plants under stress: an analysis of the ROPIS experiments. J. Eviron. Qual 23: 412-417.
  • [45] Legocki A. 1994. Nowe zdobycze genetyki i biologii molekularnej podstawą rozwoju biotechnologii roślin. Post. Biol. Komórki 21: 99-103.
  • [46] Levitt J. 1980. Response of plants to environmental stresses. Acad. Press.
  • [47] Levitt J. 1990. Stress interactions-back to the future. HortSci 25: 1363-1365.
  • [48] Long S. P., Woodward F. I., eds. 1988. Plant and temperature. Symp. Soc. Exp. Biol. Cambridge Comp. of Biologist. 42.
  • [49] Lorenc-Plucińska G. 1988. Badania wpływu dwutlenku siarki i siarczynu na transport asymilatów u roślin wyższych. PAN Inst. Dendrologii. Praca habilitacyjna. Kórnik.
  • [50] Majorowski M 1993. Wpływ warunków oświetlenia na współzależność pomiędzy akceptorami i donorami asymilatów u pomidora. Praca doktorska Katedra Fizjologii Roślin SGGW Warszawa.
  • [51] Martin B., Ort D.R. 1985. There covery of photo synthesis in tomato subsequent to chilling exposure. Photosynt. Res. 6: 121-132
  • [52] Mc'Wiliam J. R., Kramer P. J., Musser R. L. 1982. Temeperature-induced water stress in chilling sensitive plants. Aust J. Plant Physiol. 9: 343-352.
  • [53] Minchin P. E. H., Thorpe M. R., Farrar J. F. 1993. A simple mechanistic model of phloem transport which explains sink priority. J. Exp. Bot. 44: 947-955.
  • [54] Minchin P. E. H., Thorpe M.R., Farrar J. F. 1994. Short-therm control of root shoot partitioning. J. Exp. Bot 45: 615-622.
  • [55] Minchin P. E. H., Farrar J. F., Thorpe MR. 1994. Partitioning of carbon in split root systems of barley: effect of temperature of the root. J. Exp. Bot. 45: 1103-1109.
  • [56] Mooney H. A., Winner W. I. E., Pell E. I. J., Chu E. eds. 1991. Response of plants to multiple stresses. Acad. Press.
  • [57] Mozafar A., Oertli J. J. 1990. Multiple stress and growth of barley: effect of salinity and temperature shock. Plant and Soil 128: 153-160.
  • [58] Munns R., Scharp R. E. 1993. Involvement of abscisic acid in controlling plant growth in soils of low water potential. Aust J. Plant Physil 20: 425-437.
  • [59] Niemyska B. 1986. Transport i akumulacja asymilatów w roślinie. Wiad. Bot. 30: 163-176.
  • [60] Niemyska B., Starck Z. 1988. Effect of GA3 on photosynthate allocation and invertase activity in radish plants grown on different potasium levels. Acta Soc. Bot Pol. 51: 523-538.
  • [61] Ofir M., Gross Y., Bangerth F., Kigel J. 1993. High temeperature effects on pod and seed production as related to hormone levels and abscission of reproductive structures in common bean (Phaseolus vulgaris L.) Sci. Hort. 55: 201-211.
  • [62] Pardossi A., Vernieri P., Tognoni F. 1992. Involvement of abscisic acid in regulating water status in Phaseolus vulgaris L. during chilling. Plant Physiol. 100: 1243-1250.
  • [63] Parthier B. 1991. Jasmonates, new regulators of plant growth and development many facts and few hypotheses on their actions. Bot. Acta. 104: 446-454.
  • [64] Paul M. J., Driscoli S.P., Lawlor D. W. 1992. Sink-regulation of pohotosynthesis in relation to temperature in sunflower and rape. J. Exp. Bot. 43: 147-153.
  • [65] Rychter A. M, Mikulska M 1990. The relationship between phosphate status and cyanide-resistant respiration in bean roots. Physiol. Plant. 19: 663-667.
  • [66] Saab I. N., Sharp R. R., Pritchard J., Voetberg G. S. 1990. Increased endogenous abscisis acid maintains promary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol. 93: 1329-1336.
  • [67] Sachs M. M., Tuan-Hu A., Ho D. 1986. Alternation of gene expression during enviromnental stress in plants. Ann. Rev. Plant Physiol. 37: 363-376.
  • [68] Santoiani C. S., Tognetti J. A., Pontis H. G., Salerno G. L. 1993. Sucrose and fructan metabolism in wheat roots at chilling temperatures. Physiol. Plant 87: 84-88.
  • [69] Shmp R. E., Davies W. J. 1979. Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta 147: 43-49.
  • [70] Sharpe P. J. H.,Rykiel E. J. Jr. 1991. Modelling integrated response of plants to multiple stresses. 205-222. In: Response of plants to multiple stresses eds. Mooney H. A., Winner W. E., Pill E. J., Chu E. Acad. Press.
  • [71] Shishido Y., Hori Y. 1979. Studies on translocation and distribution of photosynthetic assimilates in tomato plants. Tohoku J. Agric. Press 30: 87-94.
  • [72] Show A. F., Grange R. J., Ho L. C. 1986. There gulation of source leaf assimilate compartmentation. 391-398. In: Phloem transport. ed. Alan R. Lis Inc.
  • [73] Skrabka H. 1992. Roślina a środowisko. Wybrane działy z fizjologii roślin. Sposoby przystosowania się roślin do warunków stresowych. Wiad. Akad. Rol. Wrocław nr 374.
  • [74] Sonnenwald U., Willmitzer L. 1992. Molecular approaches to sink-source interactions. Plant Physiol. 99: 1267-1270.
  • [75] Sowiński P., Maleszewski S. 1989. Chilling sensitivity in maize seedlings. I. Growth and functioning of shoots and roots. Acta Physiol. Plant. 11: 165-171.
  • [76] Sowiński P., Maleszewski S. 1990. Chilling sensativity in maize seedlings. II. Effect of low temperature on transport of C14-assimilates from leaves to roots. Acta Physiol. Plant. 12: 35-40.
  • [77] Sowiński P., Skibińska J., Dębiński E. Activity of sucrose phosphate synthase in cold treated maize seedlings; in press.
  • [78] Spolien W. G., Sharp R. E., Saab I. N., WU Y. 1993. Regulation of cell expansion in roots and shoots at lower water potentials. 37-72. In: Water deficits plant responses from cell to community, eds. Smith J. A. C., Griffiths H. Bios. Sci. Publ.
  • [79] Starck Z. 1973. The effect of shading during growth on the subsequent distribution of 14C-assimilates in Raphanus sativus. Bull. de l'Acad. Pol. des Sci. s. Biol. 21: 309-314.
  • [80] Starck Z. 1992. Transport i dystrybucja substancji pokarmowych w roślinach. Biol. w Szkole. 45: 171-177.
  • [81] Starck Z., Choluj D., Niemyska B. 1993. Fizjologiczne reakcje roślin na niekorzystne czynniki środowiska. Wyd. SGGW.
  • [82] Starck Z., Choluj D., Niemyska B. 1994. Source-sink response to chilling stress in tomato plants. Biol. Plantarum 36 supl.: 254.
  • [83] Starck Z., Choluj D., Kalaji H. M. Photosynthesis and biomass allocation as response to chilling in tomato plants; in press.
  • [84] Starck Z., Choluj D., Niemyska B.1994. Effect of preceding temperature and subsequent conditions on response of tomato plants to chilling. Acta Physiol. Plant. 16: 329-336.
  • [85] Starck Z., Cieśla E. 1989. Possible role of growth regulatores in adaptation to heat stress affecting partitioning of photosynthates in tomato plants. Acta Soc. Bot Pol. 58: 71-84.
  • [86] Starck Z., Ważyńska Z., Kucewicz O. 1993. Comparative effects of heat stress on photosynthesis and chloroplast ultrastructure in tomato plants with source-sink modulate by growth regulators. Acta Physiol. Plant. 15: 125-133.
  • [87] Starck Z., Witek-Czupryńska B. 1991. Fruit growth as factor controlling photosynthesis and carbon partitioning in tomato plants. Acta Physiol. Plant 13: 105-113.
  • [88] Staswick P. E. 1994. Storage proteins of vegetative plant tissues. Ann. Rev. Plant Physiol. Plant Mol. Biol. 45: 303-322.
  • [89] Talanova V. V., Titov A. F. 1994. Endogenous abscisic acid content in cucumber leaves under the influence of unfavourable temperatures and salinity. J. Exp. Bot 45: 1031-1033.
  • [90] Turner A. D., Wien H. C. 1994. Dry matter assimilation and partition in pepper cultivars differing in susceptibility to stress-induced bud and flower abscission. Ann. Bot. 73: 617-622.
  • [91] Turner A. D., Wien H. C. 1994. Photosynthesis, dark respiration and bud sugar concentrations in pepper cultivars differing in susceptibility to stress-induced bud abscission. Ann. Bot 73: 623-628.
  • [92] Van Bel A. J. E. 1993. Strategies of phloem loading. Ann. Rev. Plant Physiol. Plant Mol. Biol.44: 253-281.
  • [93] Van Bel A. J. E., Gamalei Y.V. 1992. Ecophysiology of phloem loading in source leaves. Plant Cell Environ. 15: 265-270.
  • [94] Van Der Werf A., Visser A. J., Schieving F., Lambers H. 1993. Evidence for optimal partitioning of biomass and nitrogen at a range of nitrogen availabilities for a fast- and slow-growing species. Func. Ecology. 7: 63-74.
  • [95] Vernieri P., Pardosi A., Tognoni F. 1989. Chilling-induced water stress in tomato: effect on abscisic acid accumulation. Adv. Hort Sci. 3: 78-.80.
  • [96] Vierling E., Kimpel J. A. 1992. Plant responses to environmental stress. Current Opinion in Biotechn. 3: 164-170.
  • [97] Voesenek L. A. C. J., Van Der Veen R. 1994. The role of phytohormones in plant stress: too much or to little water. Acta Bot. Neerl. 43: 91-127.
  • [98] Wallace D. H., Baudoin J.P., Beaver J., Coyne D.P., Halseth D. E., Masaya P. N., Munger H. M, Myers J. R., Silbernagel M., Yourstone K. S., Zobel R. W. 1993. Improving efficiency of breeding for higher crop yield. Theor. Appl. Genet. 86: 27-40.
  • [99] Wardlaw I. F. 1990. The control of carbon partitioning in plants. New Phytol. 116: 341-381.
  • [100] Weinstein D. A., Yanai R. D. 1994. Integrating the effects of simultaneous multiple stresses on plants using the simulation model TREGRO. J. Environ. Qual. 23: 418-428.
  • [101] Wilson J. B. 1988. A review of evidence on the control of shoot: root ratio in relation to models. Ann. Bot. 61: 433-449.
  • [102] Zhang F. J., Davies W. J. 1990. Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance end growth. Plant. Cell Environ. 13: 271-285.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-fc457fe8-a794-45c6-9683-69027392ee4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.