PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 28 | 5 |

Tytuł artykułu

Cadmium-induced microsomal membrane-bound peroxidases mediated hydroxen peroxide production in barley roots

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effect of cadmium on microsomal membrane-bound peroxidases and their involvement in hydrogen peroxide production was studted in barley roots. One anionic and two cationic peroxidases were detected, which were strongly activated by Cd treatment. Positive correlation was found between root growth inhibition and increased peroxidase, NADH oxidase activity and H2O2 generation in root microsomal membrane fraction of Cd-treated barley roots.

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.453-457,fig.,ref.

Twórcy

autor
  • Slovak Academy of Sciences, Dubravska cesta 14, SK-84523 Bratislava, Slovakia
autor
autor
autor

Bibliografia

  • Askerlund P., Larsson C., Widell S., Molier I.M. 1987. NAD(P)H oxidase and peroxidase activities in purified plasma membranes from cauliflower inflorescences. Physiol Plant., 71: 9-19.
  • Bradford M.N. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254.
  • Chance B., Maehly A.C. 1995. Assay of catalases and peroxidases. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, Vol 2. Academic Press, New York, NY, pp 764-775.
  • Chaoui A., Jarrar B., El Ferjani E. 2004. Effects of cadmium and copper on peroxidase NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions ofpea roots. J. Plant Physiol., 161: 1225-1234.
  • Chen S.L., Kao C.H. 1995. Cd induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant growth regul., 17: 67-71.
  • Cho U., Seo N. 2005. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci., 168: 113-120.
  • de Marco A., Roubelakis-Angelakis K.A. 1996. The complexity of enzymatic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplast. Plant Physiol., 110: 137-145.
  • Gadd G.M., White C. 1993. Microbial treatment of metal pollution - a working biotechnology. Trends Biotechnol., 11: 353-359.
  • Gonzales L.F., Rojas M.C. 1999. Role of wall peroxidases in oat growth inhibition by DIMBOA. Phytochem., 50: 931-937.
  • Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H. 2001. A large family of Class III plant peroxidases. Plant Cell Physiol., 42: 462-468.
  • Ishida A., Ookubo K., Ono K. 1987. Formation of hydrogen peroxide by NAD(P)H oxidation with isolated cell wall-associated peroxidase from cultured liverwort cells, Marchantia polymorpha L. Plant Cell Physiol., 28: 723-726.
  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly ofthe head of the bacteriophage T4. Nature, 277: 680-685.
  • Liszkay A., Kenk B., Schopfer P. 2003. Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl rad icals me di at ing ex ten sion growth. Planta, 217: 658-667.
  • Mader M., Ungemach J., SchloP P. 1980. The role of peroxidase isoenzyme groups of Nicotiana tabacum in hydrogen peroxide formation. Planta, 147: 467-470.
  • Metwally A., Safranova V.I., Belimov A.A., Dietz K. 2005. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J. Exp. Bot., 56: 167-178.
  • Mika A., Luthje S. 2003. Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiol., 132:1489-1498.
  • Olmos E., Martinez-Solano J.R., Piqueras A., Hellin E. 2003. Early steps in the oxtdative burst induced by cadmium in cultured tobacco cells (BY-2 line). J. Exp. Bot., 54: 291-301.
  • Patykowski J., Urbanek H. 2003. Activity of enzymes related to H2O2 generation and metabolism in leaf apo- plastic fraction of tomato leaves infected with Bo try tis cinerea. J. Phytopathol., 151: 153-161.
  • Ranieri A., Castagna A., Scebba F., Careri M., Zagnoni I., Predieri G., Pagliari M., Sanita di Toppi L. 2005. Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol. Biochem., 43: 45-54.
  • Reisfeld R.A., Levis U.J., Wil liams D.E. 1962. Disk elec tro pho re sis of ba sic pro teins and pep tides on polyacrylamide gels. Nature, 195: 281-283.
  • Romero-Puertas M.C., Palma J.M., Gómez M., Del Rio L.A., Sandalio L.M. 2002. Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ., 25: 677-686.
  • Sanita di Toppi L., Gabbrielli R. 1999. Response to cadmium in higher plants. Env. Exp. Bot., 41: 105-130.
  • Schopfer P., Plachy C., Frahry G. 2001. Release of active oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberillin, and abscisic acid. Plant Physiol., 125: 1591-1602.
  • Simonovicova M., Huttova J., Mistrik I., Siroka B., Tamas L. 2004. Peroxidase mediated hydrogen peroxide production in barley roots grown under stress conditions. Plant Growth Regul., 44: 267 - 275.
  • Simonovicova M., Bocova B., Huttova J., Mitrik I., Tamas L. 2005. Effect of cadmium on oxalate oxidase activity in barley roots. Biologia, 60: 463-466.
  • Tamas L., Huttova J., Mistrik I. 2003. Inhibition of Al-induced root elongation and enhancement of Al-induced peroxidase in Al-sensitive and Al-resistant barley cultivars are pos itively corret ated. Plant Soil, 250: 193-200.
  • Tamas L., Simonovicova M., Huttova J., Mistrik I. 2004. Elevated oxalate oxidase activity is correlated with Al-induced plasma membrane injury and root growth inhibition in young barley roots. Acta Physiol. Plant., 26: 85-93.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-fc1d3611-c71e-4896-9d5d-aa40f5f3a33f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.