PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 45 | 3 |

Tytuł artykułu

7-Deazapurine 2'-deoxyribofuranosides are noncleavable competitive inhibitors of Escherichia coli purine nucleoside phosphorylase [PNP]

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A series of 7-deazapurine 2'-deoxyribofuranosides were synthesized according to already known procedures and their substrate and inhibitor properties with purified E. coli purine nucleoside phosphorylase were examined. In agreement with previous findings, substrate activity was not detected for any of the compounds tested. Most of the nucleosides showed weak inhibition in the preliminary screening, i.e. at a concentration of about 100 μM. However some combinations of 6-chloro, 6-amino or 6-methoxy substituents with bulky hydrophobic groups at position 7 of the base and/or chloro, amino, methoxy or methylthio group at position 2 markedly enhanced affinity of such modified nucleosides for the E. coli enzyme. The most potent inhibition was observed for two nucleosides: 6-chloro- and 2-amino-6-chloro-7-deazapurine 2'-deoxyribofuranosides that show inhibition constants Ki = 2.4 and 2.3 μM, respectively. Several other compounds were also found to be good inhibitors, with inhibition constants in the range 5-50 μM. In all instances the inhibition was competitive vs. the nucleoside substrate 7-methylguanosine. Inhibition constants for 7-deazapurine nucleosides are in general several-fold lower than those observed for their purine counterparts. Therefore 7-deaza modification together with substitutions at positions 2, 6 and 7 of the base is a very promising approach to obtain competitive noncleavable inhibitors of E. coli PNP that may bind to the enzyme with inhibition constants in the μM range.

Wydawca

-

Rocznik

Tom

45

Numer

3

Opis fizyczny

p.755-768,fig.

Twórcy

autor
  • University of Warsaw, Warsaw, Poland
autor

Bibliografia

  • 1. Beulter, E. (1992) Cladribine (2-chlorodeoxy- adenosine). Lancet 340, 952-956.
  • 2. Bryson, H.M. & Sorkin. E.M. (1993) Cladrib­ine: A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in hematological malignancies. Drugs 46, 872-894.
  • 3. Sipe, J.C., Rominc, J.S., Koziol, J.A., McMil­lan, R. & Beulter, E. (1994) Cladribine in treat­ment of chronic progressive multiple sclero­sis. Lancet 344, 9-13.
  • 4. Carson, D.A., Wasson, D.B., Esparza, L.M., Carrera, CJ., Kipps, T.J. & Cattam, H.B. (1992) Oral antilymphocyte activity and induc­tion of apoptosis by 2-chloro-2'-arabino-fluoro- 2'deoxyadenosine. Proc. Natl Acad. Sei. U.S.A. 89, 2970-2974.
  • 5. Tarasiuk. A., Skierski, J. & Kazimierczuk, Z. (1994) Stability of 2-chloro-2'-deoxyadenosine at various pH and temperature. Arch. Immu­nol Ther. Exp. 42, 13-15.
  • 6. Bzowska, A. & Kazimierczuk, Z. (1995) Cladribine (2-CdA) and its analogues are good substrates and potent selective inhibitors of bacterial (Escherichia coli) purine nucleoside Phosphorylase. Eur. J. Biochem. 233, 886- 890.
  • 7. Stoeckler, J.D., Ryden, J.B., Parks, R.E., Jr., Chu, M.Y., Lim, M.I., Ren, W.Y. & Klein, R.S. (1986) Inhibitors of purine nucleoside Phos­phorylase: Effects of 9-deazapurine ribonu- cleosides and synthesis of 5'-deoxy-5'-iodo-9- deazainosine. Cancer Res. 46. 1774-1778.
  • 8. Stoeckler, J.D. (1984) Purine nucleoside Phos­phorylase: A target for chemotherapy; in De­velopments in Cancer Chemotherapy (Glazer, R.J., ed.) pp. 35-60, CRC Press Inc., Boca Ra­ton.
  • 9. Bzowska, A., Kulikowska, E. & Shugar, D. (1992) Formycins A and B and some ana­logues: Selective inhibitors of bacterial (E. coli) purine nucleoside Phosphorylase. Bio- chim. Biophys. Acta 1120, 239-247.
  • 10. Dookocil, J. & Holy, A. (1977) Specificity of pu­rine nucleoside Phosphorylase from Escheri­chia coli. Coll Czech. Chem. Commun. 42, 370-383.
  • 11. Ohkuma, K. (1960) Chemical structure of toyo- camycin. J. Antibiotics 13A, 361-363.
  • 12. Bzowska, A., Kulikowska, E. & Shugar, D. (1993) Linear free energy relationships for N(7)-substituted guanosines as substrates of calf spleen purine nucleoside phosphorylase. Possible role of N(7) protonation as a catalytic mechanism. Z. Naturforsch. 48c, 803-811.
  • 13. Kline, P.C. & Schramm, V.L. (1993) Purine nu­cleoside phosphorylase. Catalytic mechanism and transition-state analysis of the arsenolysis reaction. Biochemistry 32, 13212- 13219.
  • 14. Erion, M.D., Stoeckler, J.D., Guida, W.C., Walter, R.L. & Ealick, S.E. (1997) Purine nu­cleoside phosphorylase. 2. Catalytic mecha­nism. Biochemistry 36, 11735-11748.
  • 15. Bhuyan, B.K., Renis, H.E. & Smith, C.G. (1962) A collagen plate assay for cytotoxic agents. TT. Biological studies. Cancer Res. 22, 1131-1136.
  • 16. Duvall, L.R. (1963)Tubercidin. Cancer Chemo­ther. Rept. 30, 61-62.
  • 17. Owen, S.P. & Smith, C.G. (1964) Cytotoxicity and antitumor properties of the abnormal nu­cleoside tubercidin and related compounds. Cancer Res. 36, 19-20.
  • 18.Saneyoshi, M., Tokuzen, R. & Fukuoka. F. (1965) Anti-tumor activities and structural re­lationship of tubercidin, toyocamycin and their derivatives. Gann. 56, 219-225.
  • 19. Smith, C.G., Lummis, W.L. & Grady, J.E. (1959) An improved tissue culture assay. II. Cytotoxicity studies with antibiotics, chemi­cals and solvents. Cancer Res. 19, 847- 852.
  • 20. Renis, H.E., Johnson, H.G. & Bhuyan, B.K. (1962) A collagen plate assay for cytotoxic agents I. Methods. Cancer Res. 22, 1126- 1130.
  • 21. Grage, T.D., Rochlin, D.B., Wei»», A.J. & Wil­son, W.L. (1970) Clinical studies with tuber­cidin administrated after absorption into hu­man erythrocytes. Cancer Res. 30, 79-81.
  • 22. Acs, G, Reich, E. & Mori, M. (1964) Biological and biochemical properties of the analogue an­tibiotic tubercidin. Proc. Natl. Acad. Sci. U.S.A. 52, 493-501.
  • 23. Suzuki, S. & Marumo, S. (1961) Chemical structure of tubercidin. J. Antibiotics 14A, 34-38.
  • 24. Mao, C., Cook, W.J., Zhou, M., Koszałka, G.W., Krenitsky, T.A. & Ealick, S.E. (1997) The crystal structure of Escherichia coli purine nucleoside phosphorylase: A comparison with the human enzyme reveals a conserved topol­ogy. Structure 5, 1373-1383.
  • 25. Koellner, G., Luic, M., Shugar, D., Saenger, W. & Bzowska, A. (1998) Crystal structure of the ternary complex of E. coli purine nucleo­side phosphorylase with formycin B, a struc­tural analogae of the substrate inosine, and phosphate (sulphate) at 2.1 A resolution. J. Mol. Biol 280, 153-166.
  • 26. Leonard, N.J. & Laursen, R.A. (1965) Synthe­sis of 3^-D-ribofuranosyladenine and (3y?-D-ri- bofuranosyladenine)-5 '-phosphate. Biochemis­try 4, 354-365.
  • 27. Seela, F. & Kehne, A. (1983) 2-Deoxytuber- cidin — Synthese eines 2-Deoxyadenosin — Isostern durch Phasetransferglycosylierung. Liebigs Ann. Chem. 876-884.
  • 28. Kazimierczuk, Z., Revankar, G.T. & Robins, R.K. (1984) Total synthesis of certain 2-, 6- and 2,6-disubstituted tubercidin derivatives. Syn­thesis of tubercidin via the sodium salt glyco- sylation procedure. Nucleic Acids Res. 12, 1179-1192.
  • 29. Seela, P., Driller, H. & Liman, U. (1985) 7- Deseaza-Isostere von 2'-Desoxyxanthosin und 2'-Desoxyspongosin — Synthese via Glycosyl- ierung von 2,4-Dichlor-7H-pyrrolo[2,3-d]pyri- midin. Liebigs Ann. Chem. 312-320.
  • 30.Seela. F., Menkhoff, S. & Rehrendt, S. (1986) Furanoside-pyranoside isomerisation of tuber­cidin and its2'-deoxy derivatives: Influence of nucleobase and sugar structure on the proton- catalyzed reaction. J. Chem. Soc. Perkin. Trans. 2, 525-530.
  • 31. Seela, F., Stecker, H. Driller, H. & Bindig, U. (1987) 2-Amino-2'-desoxytubercidin und ver- 767 wandte Pyrrolo[2,3-d]pyrimidinyl-2'-desoxyr- ibofuranoside. Liebigs Ann. Chem. 15-19.
  • 32. Seela, F., Soulimane, H., Mersmann, K. & «Jür­gens, T. (1990) 2,4-Disubstituted pyrrolo[2,3- dlpyrimidine a-D- and /?-l>ribofuranosides re­lated to 7-deazaguanosine. Helv. Chim. Acta 73. 1879-1887.
  • 33. Seela, F. & Thomas, H. (1994) Synthesis of cer- tain 5-substituted 2'-deoxytubercidin deriva­tives. Helv. Chim. Acta 77, 897-903.
  • 34. Seela. F. & Zulauf, M. (1996) Palladium- catalyzed cross coupling of 7-iodo-2'-deoxytu- bercidin with terminal alkynes. Synthesis, 726-730
  • 35. Kulikowska, E., Bzowska, A., Wierzchowski, J. & Shugar, D. (1986) Properties of two un­usual, and fluorescent substrates of purine nu­cleoside phosphorylase: 7-Methylguanosine and 7-methylinosine. Biochim. Biophys. Acta 874, 355-363.
  • 36. Bzowska, A., Kulikowska. E. & Shugar, D. (1990) Properties of purine nucleoside phos­phorylase (PNP) of mammalian and bacterial origin. Z. Naturforsch. 45c, 59-70.
  • 37. Schräder, W.P., Stacy, A.R. & Pollara, B. (1976) Purification of human erythrocyte adenosine deaminase by affinity column chro­matography. J. Biol Chem. 251, 4026-4032.
  • 38. Lehikoinen, P.K., Sinnot, M.L. & Krenitsky, T.A. (1989) Investigation of a-deuterium ki­netic isotope effects on the purine nucleoside phosphorylase reaction by the equilibrium- perturbation technique. Biochem. J. 2,51, 355-359.
  • 39. Cook, W. J., Ealick, S.E., Krenitsky, T., Stoeck- ler, J.D., Helliwell, J.R. & Bugg, S.E. (1985) Crystallization and preliminary X-ray investi­gation of purine nucleoside phosphorylase form Escherichia coli. J. Biol Chem. 260. 12968-12969.
  • 40. Kalckar. H.M. (1947) Enzymatic synthesis of purine ribosides. J. Biol Chem. 167,477-486.
  • 41. Stoeckler, J.D., Agarwal, R.P., Agarwal, K.C. & Parks, R.E., Jr. (1978) Purine nucleoside Phosphorylase from human erythrocytes. Me­thods Enzymol 51, 530-538.
  • 42. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
  • 43.Stoscheck, C.M. (1990) Quantitation of pro­teins. Methods Enzymol 182, 50-68.
  • 44. Hershfield, M.S.. Chaffee, S., KoroJohnson, L., Mary, A., Smith, A.A. & Short, S.A. (1991) Use of sitc-directed mutagenesis to enhance the epitope-shielding effect of covalent modifi­cation of proteins with polyethylene glycol. I*roc. Natl Acad. Sei U.S.A. 88, 7185-7189.
  • 45. Jensen, K.F. & Nygaard, P. (1975) Purine nu­cleoside Phosphorylase from Escherichia coli and Salmonella typhimurium. Purification and some properties. Eur. J. Biochem. 51, 253-265.
  • 46. Dawson, R.M.C., Elliott, D., Elliott, W.H. & Jones, K.M. (1969) Data for Biochemical Re­search, pp. 58-61, Oxford University Press, Ely House, London.
  • 47. Segal, I.H. (1975) Enzyme Kinetics. John Wiley and Sons, New York.
  • 48. Keleti, T. (1986) Basic Enzyme Kinetics. Akade- miai Kiado, Budapest.
  • 49. Hammes, G.G. (1982) Enzyme Catalysis and Regulation. Academic Press.
  • 50. Bzowska, A. Kulikowska, E., Shugar, D., Bing- yi, C., Lindborg, B. & Johansson, N.G. (1991) Acyclonucleoside analogue inhibitors of mam­malian purine nucleoside Phosphorylase. Bio­chem. Pharmacol. 41, 1791-1803.
  • 51. Bzowska, A. Kulikowska, E., Poopeiko, N.E. & Shugar, D. (1996) Kinetics of phosphorolysis of 3-{$-I>-ribofuranosyl)adenine and 3-(ß-D-ribo- furanosyl)hypoxanthine, non-conventional substrates of purine nucleoside Phosphory­lase. Eur. J. Biochem. 239, 229-234.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-fb755f24-a601-4eab-a368-de1c96766a3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.