PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 53 | 1 |

Tytuł artykułu

Piggyback whorls: A new theoretical morphologic model reveals constructional linkages among morphological characters in ammonoids

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A new theoretical morphological model is proposed for the analysis of growth, form and morphospace of ammonoid shells. In this model, the shape of a radial cross section through the shell is simulated by “piggybacking” of successive whorls. The “piggyback whorls model” is defined in terms of the enlarging rate of the perimeter and the proportion of the dorsal wall to the whorl periphery, if an isometric relationship is assumed between perimeter and area of the cross−sectioned whorl. Allometric coefficients on these growth parameters determine how compressed and evolute shells are formed. The present model successfully reproduced some correlations among purely geometric variables that have been reported in previous works and were also observed in our biometric analyses. This model yields a hypothesis of “constructional linkages” between aperture shape and coiling geometry that might provide a functional coupling between hydrostatic and hydrodynamic characters. The model may partly explain Buckman’s Law of Covariation between rib features and shell shapes.

Wydawca

-

Rocznik

Tom

53

Numer

1

Opis fizyczny

p.113-128,fig.,ref.

Twórcy

autor
  • Shizuoka University, Oya 836, Surugaku, Shizuoka 422-8529, Japan
autor
autor
autor
autor

Bibliografia

  • Ackerly, S.C. 1989. Kinematics of accretionary shell growth, with examples from brachiopods and molluscs. Paleobiology 4: 374–378.
  • Adams, R.A. 1998. Evolutionary implications of developmental and functional integration in bat wings. Journal of Zoology 246: 165–174.
  • Alberch, P. 1980. Ontogenesis and morphological diversification. American Zoologists 20: 653–667.
  • Alberch, P. 1982. Developmental constraints in evolutionary processes. In: J.T. Bonner (ed.), Evolution and Development, 313–332. Springer−Verlag, Berlin.
  • Bayer, U. 1978. Morphologenetic programs, instabilities, and evolution—a theoretical study. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 156: 226–261.
  • Bayer, U. and McGhee, J.R. Jr. 1984. Iterative evolution of Middle Jurassic ammonite faunas. Lethaia 17: 1–16.
  • Bogoslovskaya, M.F. [Bogoslovskaâ, M.F.], Kuzina, L.F., and Leonova, T.B. 1999. Classification and distribution of late Paleozoic ammonoids [in Russian, with English abstract]. In: A.Û. Rozanov and A.A. Ševyrev (eds.), Iskopaemye cefalopody: novejšie dostiženiâ v ih izučenii, 89–124. Paleontologičeskij Institut, Rossijskajâ academiâ nauk, Moskva.
  • Checa, A. 1991. Sectorial expansion and shell morphogenesis in molluscs. Lethaia 24: 97–114.
  • Checa, A. and Aguado, R. 1992. Sectorial−expansion analysis of irregularly coiled shells; application to the Recent gastropod Distorsio. Palaeontology 35: 913–925.
  • Cheverud, J.M. 1996. Developmental integration and the evolution of pleiotropy. American Zoologists 36: 44–50.
  • Dagys, A.S. 2001. The ammonoid family Arctohungaritidae from the Boreal Lower−Middle Anisian (Triassic) of Arctic Asia. Revue Paléobiologie, Genève 20: 543–641.
  • Dagys, A.S., Bucher, H., and Weitschat, W. 1999. Intraspecific variation of Parasibirites kolymensis Bychkov (Ammonoidea) from the Lower Triassic (Spathian) of Arctic Asia. Mitteilungen Geologisches−Paläontologisches Institut Universität Hamburg 83: 163–178.
  • Dagys, A.S. and Weitschat, W. 1993. Extensive intraspecific variation in a Triassic ammonoid from Siberia. Lethaia 26: 113–121.
  • Dommergues, J−L., Laurin, B., and Meister, C. 1996. Evolution of ammonoid morphospace during the Early Jurrasic radiation. Paleobiology 22: 219–240.
  • Ebel, K. 1990. Swimming abilities in ammonites and limitations. Paläontologische Zeitschrift 64: 25–37.
  • Gottobrio, W.E. and Saunders, W.B. 2005. The clymeniid dilemma: functional implications of the dorsal siphuncle in clymeniid ammonoids. Paleobiology 31: 233–252.
  • Guex, J., Koch, A., O’Dogherty, L., and Bucher, H. 2003. A morphogenetic explanation of Buckman’s law of covariation. Bulletin de la Société géologiaue de France 174: 603–606.
  • Hammer, Ø. and Bucher, H. 2005a. Buckman's first law of covariation—a case of proportionality. Lethaia 38: 67–72.
  • Hammer, Ø. and Bucher, H. 2005b. Models for the morphogenesis of the molluscan shell. Lethaia 38: 111–122.
  • Hutchinson, J.M.C. 1989. Control of gastropod shell shape: the role of the preceding whorl. Journal of Theoretical Biology 140: 431–444.
  • Imbrie, J. 1956. Biometrical methods in the study of invertebrate fossils. Bulletin of the American Museum of Natural History 108: 217–252.
  • Jacobs, D.K. 1992. Shape, drag, and power in ammonoid swimming. Paleobiology 18: 203–220.
  • Jacobs, D.K. and Chamberlain, J.A. Jr. 1996. Buoyancy and hydrodynamics in ammonoids. In: N.H. Landman, K. Tanabe, and R.A. Davis (eds.), Ammonoid Paleobiology,169–224. Plenum, New York.
  • Jones, H.E. 1937. Some geometrical considerations in the general theory of fitting lines and planes. Metron 13: 21.
  • Kauffman, S.A. 1983. Developmental constraints: internal factors in evolution. In: B. Goodwin, N. Holder, and C.C. Wiley (eds.), Development and Evolution, 195–225. Cambridge University Press, Cambridge.
  • Kennedy, W.J. and Cobban, W.A. 1976. Aspects of ammonite biology, biogeography, and biostratigraphy. Special Papers in Palaeontology 17: 1–94.
  • Klingenberg, C.P. 2005. Developmental constraints, nodules, and evolvability. In: B. Hallgrímsson and B.K. Hall (eds.), Variation: A Central Concept in Biology, 219–249. Academic Press, San Diego.
  • Klug, C. and Korn, D. 2004. The origin of ammonoid locomotion. Acta Palaeontologica Polonica 49: 235–242.
  • Korn, D. 2000. Morphospace occupation of ammonoids over the Devonian–Carboniferous boundary.Paläontologische Zeitschrift 74: 247–257.
  • Korn, D. and Klug, C. 2002. Ammoneae Devonicae. In: W. Riegraf (ed.), Fossilum Catalogus I: Animalia Pars 138. 375 pp. Backhuys, Leiden.
  • Korn, D. and Klug, C. 2003. Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology 29: 329–348.
  • Kulicki, C., Tanabe, K., Landman, N.H., and Mapes, R.H. 2001. Dorsal shell wall in ammonoids. Acta Palaeontologica Polonica 46: 23–42.
  • McGhee, G.R. Jr. 1978. Analysis of the shell torsion phenomenon on the Bivalvia. Lethaia 11: 315–329.
  • McGowan, A.J. 2004. The effect of the Permo−Triassic bottleneck on Triassic ammonoid morphological evolution. Paleobiology 30: 369–395.
  • Morita, R. 1991a. Finite element analysis of a double membrane tube (DMS−tube) and its implication for gastropod shell morphology. Journal of Morphology 207: 81–92.
  • Morita, R. 1991b. Mechanical constraints on aperture form in gastropods. Journal of Morphology 207: 93–102.
  • Morita, R. 1993. Development mechanics of retractor muscles and the “Dead Spiral Model” in gastropod shell morphogenesis. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 190: 191–217.
  • Morita, R. 2003. Why do univalve shells of gastropods coil so tightly? A head−foot guidance model of shell growth and its implication on developmental constraints.In: T. Sekimura, S. Noji, N. Ueno, and P.K. Maini (eds.), Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, 345–354. Springer−Verlag, Tokyo.
  • Moore, P.J., Harris, W.E., Montrose, V.T., Levin, D., and Moore, A.J. 2004. Constraints on evolution and postcopulatory sexual selection: trade−offs among ejaculate characteristics. Evolution 58: 1773–1780.
  • Müller, G.B. 1989. Ancestral patterns in bird limb development: a new look at Hampé’s experiment. Journal of Evolutionary Biology 2: 31–47.
  • Nikolaeva, S.V. and Barskov, I.S. 1994. Morphogenetic trends in the evolution of Carboniferous ammonoids. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 193: 401–418.
  • Okamoto, T. 1988. Analysis of heteromorph ammonoids by differential geometry. Palaeontology 31: 35–52.
  • Okamoto, T. 1996. Theoretical modeling of ammonoid morphology. In: N.H. Landman, K. Tanabe, and R.A. Davis (eds.), Ammonoid Paleobiology, 225–251. Plenum, New York.
  • Page, K.N. 1996. Mesozoic ammonoids in space and time. In: N.H. Landman, K. Tanabe, and R.A. Davis (eds.), Ammonoid Paleobiology, 755–794. Plenum, New York.
  • Raff, R.A. 1996. The Shape of Life: Genes, Development, and the Evolution of Animal Form. 544 pp. University of Chicago Press, Chicago.
  • Raup, D.M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41: 43–65.
  • Rice, S.H. 1998. The bio−geometry of mollusk shells. Paleobiology 24: 133–149.
  • Richardson, M.K. and Chipman, A.D. 2003. Developmental constraints in a comparative framework: a test case using variations in phalanx number during amniote evolution. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 296: 8–22.
  • Saunders, W.B. and Shapiro, E.A. 1986. Calculation and simulation of ammonoid hydrodynamics. Paleobiology 12: 64–79.
  • Saunders, W.B. and Swan, A.R.H. 1984. Morphology and morphological diversity of mid−Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10: 195–228.
  • Saunders, W.B. and Work, D.M. 1996. Shell morphology and suture complexity in Upper Carboniferous ammonoids. Paleobiology 22: 189–218.
  • Saunders, W.B. and Work, D.M. 1997. Evolution of shell morphology and suture complexity in Paleozoic prolecanitids, the rootstock of Mesozoic ammonoids. Paleobiology 23: 301–325.
  • Saunders, W.B., Work, D.M., and Nikolaeva, S.V. 2004. The evolutionary history of shell geometry in Paleozoic ammonoids. Paleobiology 30: 19–43.
  • Savazzi, E. 1987. Geometric and functional constraints on bivalve shell morphology. Lethaia 20: 293–306.
  • Schindel, D.E. 1990. Unoccupied morphospace and the coiled geometry of gastropods: architectural constraint or geometric covariation? In: R.M. Ross and W.D. Allmon (eds.), Causes of Evolution: A Paleontological Perspective, 270–304. University of Chicago Press, Chicago.
  • Schwenk, K. and Wagner, G.P. 2001. Function and evolution of phenotypic stability: connecting pattern to processes. American Zoologists 41: 552–563.
  • Seki, K., Tanabe, K., Landman, N.H., and Jacobs, D.K. 2000. Hydrodynamic analysis of Late Cretaceous desmoceratine ammonites. Revue Paléobiologie, Genève, Volume spéciale 8: 141–155.
  • Stone, J.R. 1995. CerioShell: a computer program designed to simulate variation in shell form. Paleobiology 21: 509–519.
  • Stone, J.R. 1996. The evolution of ideas: a phylogeny of shell models. The American Naturalist, 148: 904–929.
  • Swan, A.R.H. and Saunders, W.B. 1987. Function and shape in late Paleozoic (mid−Carboniferous) ammonoids. Paleobiology 13: 297–311.
  • Trueman, A.E. 1941. The ammonite body−chamber, with special reference to the buoyancy and mode of life of the living ammonite. Quaternary Journal of the Geological Society of London 96: 339–383.
  • Tyszka, J. 2006. Morphospace of foraminiferal shells: results from the moving reference model. Lethaia 39: 1–12.
  • Ubukata, T. 2001. Geometric pattern and growth rate of prismatic shell structures in Bivalvia. Paleontological Research 5: 33–44.
  • Ubukata, T. 2002. Stacking increments: a new model and morphospace for the analysis of bivalve shell growth. Historical Biology 15: 303–321.
  • Ubukata, T. 2003. Pattern of growth rate around aperture and shell form in Bivalvia: a theoretical morphological study.Paleobiology 29: 480–491.
  • Ubukata, T. 2004. A three−dimensional digitizing system based on triangulation using multiple viewing images [in Japanese, with English abstract]. Geoscience Reports of Shizuoka University 31: 65–72.
  • Ubukata, T. 2005. Theoretical morphology of bivalve shell sculptures. Paleobiology 31: 643–655.
  • Ward, P. 1980. Comparative shell shape distribution in Jurassic–Cretaceous ammonites and Jurassic–Tertiary nautilids. Paleobiology 6: 32–43.
  • Westerman, G.E.G. 1966. Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 124: 289–312.
  • Yacobucci, M.M. 2004. Buckman's Paradox: variability and constraints on ammonoid ornament and shell shape. Lethaia 37: 57–69.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-fa18533c-7dd5-4fc5-8b41-b053c0315262
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.