PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 18 | 4 |

Tytuł artykułu

Phytoextraction of Cd, Ni, and Pb using four willow clones [Salix spp.]

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In order to determine their phytoextraction potential, four clones of Salix (1. Salix alba – clone 68/53/1; 2. Salix alba – clone 106/54/0; 3. Salix matsudana – clone SM 4041; and 4. Salix nigra – clone 0408) were exposed to elevated concentrations of Cd, Ni and Pb-EDTA in a water culture solution. The translocation ratio to upper plant parts was very low for all applied heavy metals and, therefore, the metal uptake was restricted to the roots, especially regarding Pb. The ability of the clones to extract and translocate Cd, Ni and Pb differed depending on the quantity of metal content in the nutrient solution and of the willow genotype. The ability of the investigated clones to accumulate Cd in leaves is to our knowledge among the highest so far recorded compared to other hydroponic trials in literature. The preference for Cd-stimulated root growth was determined. This genotype-specific response could be part of a mechanism for Cd resistance.

Wydawca

-

Rocznik

Tom

18

Numer

4

Opis fizyczny

p.553-561,fig.,ref.

Twórcy

autor
  • Faculty of Natural Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 2, Novi Sad, Serbia
autor
  • Faculty of Natural Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 2, Novi Sad, Serbia
autor
  • Faculty of Natural Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 2, Novi Sad, Serbia
autor
  • Institute for Lowland Forestry and Environment, Antona Čehova 13, Novi Sad, Serbia
autor
  • Faculty of Natural Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 2, Novi Sad, Serbia
autor
  • Institute for Lowland Forestry and Environment, Antona Čehova 13, Novi Sad, Serbia

Bibliografia

  • 1. SINGH O.V., LABANA S., PANDEY G., BUDHIRAJA R., JAIN R.K. Phytoremediation: an overview of metallic ion decontamination from soil. Appl. Microbiol. Biotechnol. 61, 405, 2003.
  • 2. EBBS S.D., LASAT M.M., BRADY D.J., CORNISH J., GORDON R., KOCHIAN L.V. Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual. 26, 1424, 1997.
  • 3. STOLTZ E., GREGER M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ. Exper. Bot. 47 (3), 271, 2002.
  • 4. BENNETT L.E., BURKHEAD J.L., HALE K.L., TERRY N., PILON M., PILON-SMITS E.A.H. Analysis of transgenic indian mustard plants for phytoremediation of metalcontaminated mine tailings. J. Environ. Qual. 32, 432, 2003.
  • 5. ŚWIERK K., BIELICKA A., BOJANOWSKA I., MAĆKIEWICZ. Investigation of heavy metals leaching from industrial wastewater sludge. Polish J. of Environ. Stud. 16 (3), 447, 2007.
  • 6. HJORTENKRANS D.S.T., BERGBÄCK B.G., HAGGERUD A.V. Metal emissions from brake linings and tires: Case studies of Stockholm, Sweden 1995/1998 and 2005. Environ. Sci. Technol. 41, 5224, 2007.
  • 7. PILON-SMITHS E. Phytoremediation. Annu. Rev. Plant. Biol. 56, 15, 2005.
  • 8. PADMAVATHIAMMA P.K., LI L.Y. Phytoremediation Technology: Hyper-accumulation Metals in Plants. Water, Air, Soil Pollut. On line: DOI 10.1007/s11270-007-9401-5, 2007.
  • 9. CHANEY R.L., LI Y.M., SALLY L., BROWN S.L., HOMER F.A., MALIK M., ANGLE J.S., BAKER A.J.M., REEVES R.D., CHIN M. Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry, N., Banuelos, G., (Eds.), Phytoremediation of Contaminated Soil and Water, Boca Raton: Lewis, pp. 129-158, 2000.
  • 10. PULFORD I.D., WATSON C. Phytoremediation of heavy metal-contaminated land by trees-a review. Environ. Int. 29, 529, 2003.
  • 11. RIDDELL-BLACK D. A review of the potential for the use of trees in the rehabilitation of contaminated land. WRc Report CO 3467. Water Research Centre, Medmenham. 1993
  • 12. MERTENS J., VERVAEKE P., MEERS E., TACK F.M.G. Seasonal changes of metals in Willow (Salix sp.) stands for phytoremediation on dredged sediment. Environ. Sci. Technol. 40, 1962, 2006.
  • 13. GREGER M., LANDBERG T. Use of willow in phytoextraction. Int. J. Phytoremediat. 1, (2), 115, 1999.
  • 14. PUNSHON T., DICKINSON N.M. Heavy metal resistance and accumulation characteristics in willows. Int. J. Phytoremediat. 1, 361, 1999.
  • 15. COSIO C., VOLLENWEIDER P., KELLER C. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.) I Microlocalization and phytotoxic effects of cadmium. Environ. Exp. Bot. 58, 64, 2006.
  • 16. DOS SANTOS UTMAZIAN M.N., WIESHAMMER G., VEGA R., WENZEL W.W. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ. Pollut. 148, 155, 2007.
  • 17. KLANG-WESTIN E., ERIKSSON J. Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant Soil, 249, 127, 2003.
  • 18. LUX A., MASAROVICOVÀ E., LISKOVA D., SOTTNIKOVA-STEFANOVICOVA A., LUNACKOVA L., MARCEKOVA M. Physiological and structural characteristics and in vitro cultivation of some willows and poplars. Proceedings of the Cost Action 837, Bordeaux, 25-27 April 2002.
  • 19. LUNACKOVÀ L., MASAROVICOVÀ E., KRÀL'OVÀ K., STREŠKO V. Response of fast growing woody plants from family Salicaceae to cadmium treatment. Bull. Environ. Contam. Toxicol. 70, 576, 2003.
  • 20. APHA, Method 3111 C, Direct Air-Acethylene Flame Method, In: Eaton A.D., Clesceri L.S., Greenberg A.E. (Eds.), Standards Methods of the Examination of Water and Wastewater, 19th ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington, 1995.
  • 21. GUSSARSSON M. Cadmium-induced alterations in nutrient composition and growth of Betula pendula seedlings: the significance of fine roots as a primary target for cadmium toxicity. J. Plant. Nutr. 17, 2151, 1994.
  • 22. LANDBERG T., GREGER M. Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl Geochem. 11, 175, 1996.
  • 23. GALARDI F., CORRALES I., MENGONI A., PUCCI S., BARLETTI L., BARZANTI R., ARNETOLI M., GABBRIELLI R., GONNELLI C. Intra-specific differences in nickel tolerance and accumulation in the Ni-hyperaccumulator Alyssum bertolonii. Environ. Exp. Bot. 60, 377, 2007.
  • 24. BAKER A.J.M., WALKER P.L. Ecophysiology of metal uptake by tolerant plants. In: Shaw, A.J.(Ed.), Heavy Metal Tolerance in Plants: Evolutionary Aspects, CRC Press, Boca Raton, FL., pp. 155-177, 1990.
  • 25. MALKOWSKI E., KURTYKA R., KITA A., KARCZ W. Accumulation of Pb and Cd and its effect on Ca distribution in maize seedlings (Zea mays L.). Polish J. of Environ. Stud. 14, 203, 2005.
  • 26. KURTYKA R., MALKOWSKI E., KITA A., KARCZ W. Effect of calcium and cadmium on growth and accumulation of cadmium, calcium, potassium and sodium in maize seedlings. Polish J. of Environ. Stud. 17 (1), 51, 2007.
  • 27. BAKER A.J.M. Accumulators and excluders-strategies in response of plants to heavy metals. J. Plant Nutr. 3, 643, 1981.
  • 28. HUANG J.W., CUNNINGHAM S.D. Lead phytoextraction: species variation in lead uptake and translocation. New Phytol., 134, 75, 1996
  • 29. BLAYLOCK M.J., SALT D.E., DUSHENKOV S., ZAKHAROVA O., GUSSMAN C. Enhanced accumulation of Pb in Indian mustard by soil applied chelating agents. Environ. Sci. Technol. 31, 860, 1997.
  • 30. HUANG J.W., CHEN J., BERTI W.R. Phytoremediation of Pb contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 31, 800, 1997.
  • 31. VASSIL A.D., KAPULNIK Y., RASKIN I., SALT D.E. The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol. 117, 447, 1998.
  • 32. WU J., HSU F.C., CUNNINGHAM S.D. Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints. Environ. Sci. Technol. 33, 1898, 1999.
  • 33. ELLES M.P., BLAYLOCK M.J. Amendment optimization to enhance lead extrctability from contaminated soils for phytoremediation. Int. J. Phytoremediat. 2, 75, 2000.
  • 34. KIRKHAM M.B. EDTA-facilitated phytoremediation of soil with heavy metals from sewage sludge. Int. J. Phytoremediat. 2, 159, 2000.
  • 35. SANTOS F.S., HERNÁNDEZ-ALLICA J., BECERRRIL J.M., AMARAL-SOBRINHO N., MAZUR N., GARBISU C. Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere, 65, 43, 2006.
  • 36. MEERS E., LESAGE E., LAMSAL S., HOPGOOD M., VERVAEKE P., TACK F.M.G., VERLOO M.G. Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil. Int. J. Phytoremediat. 7, 129, 2005.
  • 37. HERNÁNDEZ-ALLICA J., GARBISU C., BARRUTIA O., BECERRIL J.M. EDTA-induced heavy metal accumulation and phytotoxicity in cardoon plants. Environ. Exp. Bot. 60, 26, 2007.
  • 38. HU N., LUO Y., WU L., SONG J. A field lysimeter study of heavy metal movement down the profile of soils with multiple metal pollution during chelate-enhanced phytoremediation. Int. J. Phytoremediat. 9, 257, 2007.
  • 39. HOUGH R.L., TYE A.M., CROUT N.M.J., MCGRATH S.P., ZHANG H., YOUNG S.D. Evaluating a ´Free Ion Activity Model´ applied to metal uptake by Lolium perenne L. grown in contaminated soils. Plant and Soil. 270, 1, 2005.
  • 40. ZHANG H., ZHAO F., SUN B., DAVISON W., MCGRATH S.P. A new method to measure effective soil solution concentration predicts copper availability to plants. Environ. Sci. Technol. 35, 2602, 2001.
  • 41. LACATUSU R., DUMITRU M., RISNOVEANU I., CIOBANU C., LUNGU M., CARSTEA S., KOVACSOVICS B., BACIU C. Soil pollution by acid rains and heavy metals in Zlatna region, Romania. In: D.E. Stott, R.H. Mohtar, G.C. Steinhardt (Eds.). Sustaining the Global Farm. Selected papers from 10th International Soil Conservation Organization Meeting, Purdue University, Indiana, pp. 817-820, 2001.
  • 42. BIERNACKA E., MALUSZYŃSKI M.J. The content of cadmium, lead and selenium in soils from selected sites in Poland. Polish J. of Environ. Stud. 15 (2a), 7, 2006.
  • 43. BRIX H., Macrophyte-mediated oxygen transfer in wetlands: transport mechanisms and rates. In: Moshiri, G.A., (Ed.), Constructed Wetland for Water Quality Improvement, Lewis Publishers, Boca Raton, London, Tokyo, pp. 391-398, 1993.
  • 44. BURD G.I., DIXON D.G., GLICK B.R. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46, 237, 2000.
  • 45. KHAN A.G., KUEK C., CHAUDHRY T.M., KHOO C.S., HAYES W.J. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 197, 2000.
  • 46. CHAO W., XIAO-CHEN L., LI-MIN Z., PEI-FANG W., ZHI-YONG G. Pb, Cu, Zn and Ni concentrations in vegetables in relation to their extractable fractions in soils in suburban areas of Nanjing, China. Polish J. of Environ. Stud. 16 (2), 199, 2007.
  • 47. BORGHI M., TOGNETTI R., MONTEFORTI G., SEBASTIANI L. Responses of Populus euramericana (P. deltoids x P. nigra) clone Adda to increasing copper concentrations. Environ. Exp. Bot. 61, 66, 2007.
  • 48. WATSON C., PULFORD I.D., RIDDELL-BLACK D. Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials. Int. J. Phytoremediat. 5, 351, 2003.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-f6f5b2d5-dcef-44de-93cb-4f7ad15d820f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.