PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 54 | 1 |

Tytuł artykułu

Nanostructural and geochemical features of the Jurassic isocrinid columnal ossicles

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Calcite isocrinid ossicles from the Middle Jurassic (Bathonian) clays in Gnaszyn (central Poland) show perfectly preserved micro− and nanostructural details typical of diagenetically unaltered echinoderm skeleton. Stereom pores are filled with ferroan calcite cements that sealed off the skeleton from diagenetic fluids and prevented structural and geochemical alteration. In contrast with high−Mg calcite skeleton of modern, tropical echinoderms, the fossil crinoid ossicles from Gnaszyn contain only 5.0–5.3 mole% of MgCO₃. This low Mg content can be a result of either a low temperature environment (ca. 10℃) and/or low Mg/Ca seawater ratio. Both conditions have been proposed for the Middle Jurassic marine environment. Occurrence of Mg−enriched central region of stereom bars of Jurassic columnal ossicle of Chariocrinus andreae is consistent with the concept of magnesium ions involvement in earliest growth phases of calcium carbonate biominerals.

Wydawca

-

Rocznik

Tom

54

Numer

1

Opis fizyczny

p.69-75,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
autor
autor
autor
autor

Bibliografia

  • Aizenberg, J., Lambert, G., Weiner, S., and Addadi, L. 2002. Factors involved in the formation of amorphous and crystalline calcium carbonate: a study of an ascidian skeleton. Journal of the American Chemical Society 124: 32–39.
  • Ameye L., De Becker, G., Killian, C., Wilt, F., Kemps, R., Kuypers S., and Dubois, P. 2001. Proteins and saccharides of the sea urchin organic matrix of mineralization: Characterization and localization in the spine skeleton. Journal of Structural Biology 134: 56–66.
  • Beniash, E., Aizenberg, J., Addadi, L., and Weiner, S. 1997. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proceedings of the Royal Society, Biological Sciences 264: 461–465.
  • Benson, S., Jones, E., Crise−Benson, N., and Wilt, F.H. 1983. Morphology of the organic matrix of the spicule of the sea urchin larva. Experimental Cell Research 148: 249–253.
  • Berman, A., Addadi, L., and Weiner, S. 1988. Interactions of sea−urchin skeleton macromolecules with growing calcite crystals—a study of intracrystalline proteins. Nature 331: 546–548.
  • Borzęcka−Prokop, B. Wesełucha−Birczyńska, A., and Koszowska, E. 2007. MicroRaman, PXRD, EDS and microscopic investigation of magnesium calcite biomineral phases. The case of sea urchin biominerals. Journal of Molecular Structure 828: 80–90.
  • Bottjer, D.J., Davidson, E.H., Peterson, K.J., and Cameron, R.A. 2006. Paleogenomics of echinoderms. Science 314: 956–960.
  • Chave, K. 1954. Aspects of biogeochemistry of magnesium 1. Calcareous marine organisms. Journal of Geology 65: 266–283.
  • Clarke, F.W. and Wheeler, W.C. 1922. The inorganic constituents of marine invertebrates (2nd edition). U.S. Geological Survey Professional Papers 124: 1–62.
  • Clausen, S. and Smith, A.B. 2008. Stem structure and evolution in the earliest pelmatozoan echinoderms. Journal of Paleontology 82: 737–748.
  • Cuif, J.−P., Dauphin, Y. Berthet, P., and Jegoudez, J. 2004. Associated water and organic compounds in coral skeletons: Quantitative thermogravimetry coupled to infrared absorption spectrometry. Geochemistry, Geophysics, Geosystems 5, Q11011, doi:10.1029/2004GC000783.
  • Dauphin, Y. 2001. Nanostructures de la nacre des tests de céphalopodes actuels. Paläontologische Zeitschrift 75: 113–122.
  • David, J. 1998. Adaptation morphologique, croissance et production bioclastique chez les crinoďdes pédonculés actuels et fossiles (Pentacrines et Millericrinina). Application paléoécologique aux gisements du Jurassique supérieur des Charentes et du nord−est du bassin de Paris. Travaux Universitaires. 551 pp. Thèse nouveau doctorat, Université de Reims, Reims, France (Université de Soutenance).
  • Dickson, J.A.D. 2002. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science 298:1222–1224.
  • Dickson, J.A.D. 2004. Echinoderm skeletal preservation: calcite−aragonite seas and the Mg/Ca ratio of phanerozoic oceans. Journal of Sedimentary Research 74: 355–365.
  • Donnay, G. and Pawson, D.L. 1969. X−ray diffraction studies of echinderm plates. Science 166: 1147–1150.
  • Gedl, P., Kaim, A., Boczarowski, A., Kędzierski, M, Smoleń, J., Szczepanik, P., Witkowska, M., and Ziaja, J. 2003. Rekonstrukcja paleośrodowiska sedymentacji środkowojurajskich iłów rudonośnych Gnaszyna (Częstochowa) – wyniki wstępne. Tomy Jurajskie 1: 19–27.
  • Gedl, P., Boczarowski, A., Dudek, T., Kaim, A., Kędzierski, M., Leonowicz, P., Smoleń, J., Szczepanik, P., Witkowska, M., and Ziaja, J. 2006. Stop B1.7—Gnaszyn clay pit (Middle Bathonian–lowermost Upper Bathonian). Lithology, fossil assemblages and paleoenvironment. 7th International Congress on the Jurassic System. September 6–18 2006, Kraków, Poland, 155–156. Polish Geological Institute, Warszawa.
  • Golonka, J., Ross, M.I., and Scotese, C.R. 1994. Phanerozoic paleogeographic and paleoclimatic modeling maps. In: A.F. Embry, B. Beauchamp, and D.J. Glass (eds.), Pangaea: Global Environments and Resources, 1–47. Canadian Society of Petroleum Geologists, Calgary.
  • Han, Y.J., Wysocki, L.M., Thanawala. M.S., Siegrist, T., and Aizenberg, J. 2005. Template−dependent morphogenesis of oriented calcite crystals in the presence of magnesium ions. Angewandte Chemie, International Edition 117: 2–6.
  • Haig, J.A. and Rouse, G.W. (in press). Larval development of the featherstar Aporometra wilsoni(Echinodermata: Crinoidea).Invertebrate Biology, doi: 10.1111/j.1744−7410.2008.00134.x.
  • Lahaye, M−C. and Jangoux, M. 1987. The skeleton of the stalked stages of the comatulid crinoid Antedon bifida (Echinodermata). Fine structure and changes during growth. Zoomorphology 107: 58–65.
  • Li, H. and Estroff, L.A. 2007. Porous calcite single crystals grown from a hydrogel medium. CrystEngComm 9: 1153–1155.
  • Lu, C., Qi, L., Cong, H., Wang, X., Yang, J., Yang, L., Zhang, D., Ma, J., and Cao, W. 2005. Synthesis of calcite single crystals with porous surface by templating of polymer latex particles. Chemistry of Materials 17: 5218–5224.
  • Majewski, W. 1997. Amonity z iłów rudonośnych okolic Częstochowy. 99 pp. Unpublished M.Sc. thesis, Department of Geology, University of Warsaw, Warsaw.
  • Majewski, W. 2000. Middle Jurassic concretions from Częstochowa (Poland) as indicators of sedimentation rates. Acta Geologica Polonica 50: 431–439.
  • Marynowski, L., Zatoń, M., Simoneit, B.R.T., Otto, A., Jędrysek, M.O., Grelowski, C., and Kurkiewicz, S. 2007. Compositions, sources and depositional environments of organic matter from the Middle Jurassic clays of Poland. Applied Geochemistry 22: 2456–2485.
  • Matyja, B.A. and Wierzbowski, A. 2000. Ammonites and stratigraphy of the uppermost Bajocian and Lower Bathonian between Częstochowa and Wieluń, Central Poland. Acta Geologica Polonica 50: 191–209.
  • Matyja, B.A. and Wierzbowski, A. 2006. Field Trip B1—Biostratigraphical framework from Bajocian to Oxfordian. Introduction. Jurassic of Poland and adjacent Slovakian Carpathians, Fieldtrip guidebook, 7th International Congress on the Jurassic System, 133–136. Polish Geological Institute, Warsaw.
  • Meibom, A., Cuif, J.P., Hillion, F., Constantz, B.R., Juillet−Leclerc, A., Dauphin, Y., Watanabe, T., and Dunbar, R.B. 2004. Distribution of magnesium in coral skeleton. Geophysical Research Letters 31, L23306, doi:10.1029/2004GL021313.
  • Meibom, A., Cuif, J.P., Houlbreque, F., Mostefaoui, S., Dauphin, Y., Meibom, K.L., and Dunbar, R. 2008. Compositional variations at ultrastructure length scales in coral skeleton. Geochimica et Cosmochimica Acta 72: 1555–1569.
  • Oaki, Y. and Imai, H. 2006. Nanoengineering in Echinoderms: The emergence of morphology from nanobricks. Small 1: 66–70.
  • Okazaki, K. 1960. Skeleton formation of sea urchin larvae. II. Organic matrix of the spicule. Embryologia 5: 283–320.
  • Park, R.J. and Meldrum, F.C. 2004. Shape−constraint as a route to calcite single crystals with complex morphologies. Journal of Materials Chemistry 14: 2291–2296.
  • Politi, Y., Arad, T., Klein, E., Weiner, S., and Addadi, L. 2004. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306: 1161–1164.
  • Robach, J.S., Stock, S.R., and Veis, A. 2005. Transmission electron microscopy characterization of macromolecular domain cavities and micro−structure of single−crystal calcite tooth plates of the sea urchin Lytechinus variegatus. Journal of Structural Biology 151: 18–29.
  • Robach, J.S., Stock, S.R., and Veis, A. 2006. Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy. Journal of Structural Biology 155: 87–95.
  • Rousseau, M., Lopez, E., Stempflé, P., Brendlé, M., Franke, L., Guette, A., Naslain, R., and Bourrat, X. 2005. Multiscale structure of sheet nacre. Biomaterials 26: 6254–6262.
  • Roux, M. 1975. Microstructural analysis of the crinoid stem. The University of Kansas, Palaeontological Contributions 75: 1–7.
  • Roux, M., Renard, M., Ameziane−Cominardi, N., and Emmanuel, L. 1995. Zoobathymétrie et composition chimique de la calcite des ossicules du pédoncule des crinoïdes. Comptes rendus de l'Académie des sciences Paris, série II a 321: 675–680.
  • Salamon, M.A. and Zatoń, M. 2007. A diverse crinoid fauna from the Middle Jurassic (Upper Bajocian–Callovian) of the Polish Jura Chain and Holy Cross Mountains (south−central Poland). Swiss Journal of Geosciences 100: 153–164.
  • Stolarski, J. and Mazur, M. 2005. Nanostructure of biogenic versus abiogenic calcium carbonate crystals.Acta Palaeontologica Polonica 50: 847–865.
  • Weber, J.N. 1969. The incorporation of magnesium into the skeletal calcites of echinoderms. American Journal of Science 267: 537–566.
  • Weber, J.N. 1973. Temperature dependence of magnesium in echinoid and asteroid skeletal calcite: a reinterpretation of its significance. Journal of Geology 81: 543–556.
  • Weiner, S. 1985. Organic matrix−like macromolecules associated with the mineral phase of sea−urchin skeletal plates and teeth. Journal of Experimental Zoology 234: 7–15.
  • Weiner, S., Sagi, I., and Addadi, L. 2005. Choosing the crystallization path less traveled. Science 309: 1027–1028.
  • Wierzbowski, H. and Joachimski, M. 2007. Reconstruction of late Bajocian–Bathonian marine palaeoenvironments using carbon and oxygen isotope ratios of calcareous fossils from the Polish Jura Chain (central Poland). Palaeogeography, Palaeoclimatology, Palaeoecology 254: 523–540.
  • Wilt, F.H. 1999. Matrix and mineral in the sea urchin larval skeleton. Journal of Structural Biology 126: 216–226.
  • Wilt, F.H. and Ettensohn, C.E. 2007. Morphogenesis and biomineralization of the sea urchin larval endoskeleton. In: E. Bauerlein (ed.), Handbook of Biomineralization, 183–210. Wiley−VCH, Winheim.
  • Zatoń, M., Barbacka, M., Marynowski, L., and Krzystanek, J. 2006. Sagenopteris (Caytoniales) with its possible preserved biomarkers from the Bathonian of the Polish Jura, south−central Poland. Neues Jahrbuch fur Geologie und Palaontologie, Monatschefte 7: 385–402.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-f580a11e-d050-4f3b-a308-f0b691148aff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.