PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 12 | 1 |

Tytuł artykułu

Spectroscopic studies of D-alpha-tocopherol concentration-induced transformation in egg phosphatidylcholine vesicles

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of embedding up to 60 mol% of α-tocopherol (α-Toc) on the morphology and structure of the egg phosphatidylcholine (PC) membrane were studied using spectroscopic techniques. The resulting vesicles were subjected to turbidometric and dynamic light scattering measurements to evaluate their size distribution. The α-Toc intrinsic fluorescence and its quenching was used to estimate the tocopherol position in the membrane. Optical microscopy was used to visualize morphological changes in the vesicles during the inclusion of tocopherol into the 2 mg/ml PC membrane. The incorporation of up to 15 mol% of tocopherol molecules into PC vesicles is accompanied by a linear increase in the fluorescence intensity and the simultaneous formation of larger, multilamellar vesicles. Increasing the tocopherol concentration above 20 mol% induced structural and morphological changes leading to the disappearance of micrometer-sized vesicles and the formation of small unilamellar vesicles of size ranging from 30 to 120 nm, mixed micelles and non-lamellar structures.

Wydawca

-

Rocznik

Tom

12

Numer

1

Opis fizyczny

p.51-69,fig.,ref.

Twórcy

autor
  • August Cieszkowski Agricultural University, Wojska Polskiego 38/42, 60-637 Poznan, Poland
autor
autor
autor

Bibliografia

  • 1. Ortiz, A., Aranda, F.J. and Gomez-Fernandez, J.C. A differential scanning calorimetry study of the interaction of alpha-tocopherol with mixtures of phospholipids. Biochim. Biophys. Acta 898 (1987) 214-222.
  • 2. Ortiz, A., Villalain, J. and Gomez-Fernandez, J.C. Interaction of diacylglycerols with phosphatidylcholine vesicles as studied by differential scanning calorimetry and fluorescence probe depolarization. Biochemistry 27 (1988) 9030-9036.
  • 3. Walke, M., Beckert, D. and Lasch, J. Interaction of UV light-induced alphatocopherol radicals with lipids detected by an electron spin resonance prooxidation effect. Photochem. Photobiol. 68 (1998) 502-510.
  • 4. Aranda, F.J., Sanchez-Migallon, M.P. and Gomez-Fernandez, J.C. Influence of alpha-tocopherol incorporation on Ca(2+)-induced fusion of phosphatidylserine vesicles. Arch. Biochem. Biophys. 333 (1996) 394-400.
  • 5. Grau, A. and Ortiz, A. Dissimilar protection of tocopherol isomers against membrane hydrolysis by phospholipase A2. Chem. Phys. Lipids 91 (1998) 109-118.
  • 6. Gutierrez, M.E., Garcia, A.F., Africa de Madariaga, M., Sagrista, M.L., Casado, F.J. and Mora, M. Interaction of tocopherols and phenolic compounds with membrane lipid components: evaluation of their antioxidant activity in a liposomal model system. Life Sci. 72 (2003) 2337- 2360.
  • 7. Chen, C.S., Patterson, M.C., Wheatley, C.L., O'Brien, J.F. and Pagano, R.E. Broad screening test for sphingolipid-storage diseases. Lancet 354 (1999) 901-905.
  • 8. Nacka, F., Cansell, M., Meleard, P. and Combe, N. Incorporation of alphatocopherol in marine lipid-based liposomes: in vitro and in vivo studies. Lipids 36 (2001) 1313-1320.
  • 9. Stillwell, W., Ehringer, W. and Wassall, S.R. Interaction of alpha-tocopherol with fatty acids in membranes and ethanol. Biochim. Biophys. Acta 1105 (1992) 237-244.
  • 10. Chen, H.W., Chiang, T., Wang, C.Y. and Lii, C.K. Inhibition of tert-butyl hydroperoxide-induced cell membrane bleb formation by alpha-tocopherol and glutathione. Food Chem. Toxicol. 38 (2000) 1089-1096.
  • 11. Sezer, A.D., Bas, A.L. and Akbuga, J. Encapsulation of enrofloxacin in liposomes I: preparation and in vitro characterization of LUV. J. Liposome Res. 14 (2004) 77-86.
  • 12. Quinn, P.J. Characterisation of clusters of alpha-tocopherol in gel and fluid phases of dipalmitoylglycerophosphocholine. Eur. J. Biochem. 233 (1995) 916-925.
  • 13. Wang, X., Semmler, K., Richter, W. and Quinn, P.J. Ripple phases induced by alpha-tocopherol in saturated diacylphosphatidylcholines. Arch. Biochem. Biophys. 377 (2000) 304-314.
  • 14. Massey, J.B. Interfacial properties of phosphatidylcholine bilayers containing vitamin E derivatives. Chem. Phys. Lipids 109 (2001) 157-174.
  • 15. Naumowicz, M. and Figaszewski, Z.A. Impedance analysis of phosphatidylcholine/alpha-tocopherol system in bilayer lipid membranes. J. Membr. Biol. 205 (2005) 29-36.
  • 16. Kaasgaard, T., Mouritsen, O.G. and Jorgensen, K. Lipid domain formation and ligand-receptor distribution in lipid bilayer membranes investigated by atomic force microscopy. FEBS Lett. 515 (2002) 29-34.
  • 17. Leidy, C., Mouritsen, O.G., Jorgensen, K. and Peters, G.H. Evolution of a rippled membrane during phospholipase A2 hydrolysis studied by timeresolved AFM. Biophys. J. 87 (2004) 408-418.
  • 18. Pedersen, T.B., Kaasgaard, T., Jensen, M.O., Frokjaer, S., Mouritsen, O.G. and Jorgensen, K. Phase behavior and nanoscale structure of phospholipid membranes incorporated with acylated C14-peptides. Biophys. J. 89 (2005) 2494-2503.
  • 19. Menger, F.M. and Keiper, J.S. Chemistry and physics of giant vesicles as biomembrane models. Curr. Opin. Chem. Biol. 2 (1998) 726-732.
  • 20. Asai, Y. Structural differences in aqueous dispersions of alpha-tocopheryl acetate and phosphatidylcholine upon varying their molar fractions. Pharmazie 59 (2004) 849-853.
  • 21. Gramlich, G., Zhang, J. and Nau, W.M. Diffusion of alpha-tocopherol in membrane models: probing the kinetics of vitamin E antioxidant action by fluorescence in real time. J. Am. Chem. Soc. 126 (2004) 5482-5492.
  • 22. Pandey, B.N. and Mishra, K.P. Effect of radiation induced lipid peroxidation on diphenylhexatriene fluorescence in egg phospholipid liposomal membrane. J. Biochem. Mol. Biol. Biophys. 6 (2002) 267-272.
  • 23. Naguib, Y.M. A fluorometric method for measurement of peroxyl radical scavenging activities of lipophilic antioxidants. Anal. Biochem. 265 (1998) 290-298.
  • 24. Di Giulio, A., Saletti, A., Oratore, A. and Bozzi, A. Monitoring by cisparinaric fluorescence of free radical induced lipid peroxidation in aqueous liposome suspensions. J. Microencapsul. 13 (1996) 435-445.
  • 25. LaLonde, R.T. and Xie, S. Glutathione and N-acetylcysteine inactivations of mutagenic 2(5H)-furanones from the chlorination of humics in water. Chem. Res. Toxicol. 6 (1993) 445-451.
  • 26. Benezra, C., Sigman, C.C., Perry, L.R., Helmes, C.T. and Maibach, H.I. A systematic search for structure-activity relationships of skin contact sensitizers: methodology. J. Invest. Dermatol. 85 (1985) 351-356.
  • 27. Kuksis, A. Animal lecithins. J. Am. Oil Chem. Soc. USA 12 (1985) 105-162. 28. Gennis, R.B. Biomembranes: molecular structure and function in Membranes. Springer-Verlag: New York, 1989.
  • 29. Berne, R. and Pecora, R. Dynamic Light Scattering. New York: Wiley 1976.
  • 30. Eastman, S.J., Hope, M.J. and Cullis, P.R. Transbilayer transport of phosphatidic acid in response to transmembrane pH gradients. Biochemistry 30 (1991) 1740-1745.
  • 31. Moro, F., Goni, F.M. and Urbaneja, M.A. Fluorescence quenching at interfaces and permaetion of acrylamide and iodide across phospholipid bilayers. FEBS 330 (1993) 129-132.
  • 32. Eftink, M.R. and Ghiron, C.A. Fluorescence quenching of indole and model micelle systems J. Phys. Chem. 80 (1976) 486-492.
  • 33. Kalinin, S.V. and Molotkovsky, J.G. Anion binding to lipid bilayers: determination using fluorescent membrane probe by direct quenching or by competitive displacement approaches. J. Biochem. Biophys. Methods 46 (2000) 39-51.
  • 34. Zheng, B., Wu, J.N., Schober, W., Lewis, D.E. and Vida, T. Isolation of yeast mutants defective for localization of vacuolar vital dyes. Proc. Natl. Acad. Sci. USA 95 (1998) 11721-11726.
  • 35. Fukuzawa, K., Ikebata, W. and Sohmi, K. Location, antioxidant and recycling dynamics of alpha-tocopherol in liposome membranes. J. Nutr. Sci. Vitaminol. (Tokyo) 39 Suppl (1993) S9-22.
  • 36. Ferezou, J., Nguyen, T.L., Leray, C., Hajri, T., Frey, A., Cabaret, Y., Courtieu, J., Lutton, C. and Bach, A.C. Lipid composition and structure of commercial parenteral emulsions. Biochim. Biophys. Acta 1213 (1994) 149-158.
  • 37. Chungcharoenwattana, S. and Ueno, M. Size control of mixed egg yolk phosphatidylcholine (EggPC)/oleate vesicles. Chem. Pharm. Bull. (Tokyo) 52 (2004) 1058-1062.
  • 38. Wang, X. and Quinn, P.J. Preferential interaction of alpha-tocopherol with phosphatidylcholines in mixed aqueous dispersions of phosphatidylcholine and phosphatidylethanolamine. Eur. J. Biochem. 267 (2000) 6362-6368.
  • 39. Wang, X. and Quinn, P.J. The interaction of alpha-tocopherol with bilayers of 1-palmitoyl-2-oleoyl-phosphatidylcholine. Biochim. Biophys. Acta 1567 (2002) 6-12.
  • 40. Nakajima, K., Utsumi, H., Kazama, M. and Hamada, A. Alpha-tocopherolinduced hexagonal HII phase formation in egg yolk phosphatidylcholine membranes. Chem. Pharm. Bull. (Tokyo) 38 (1990) 1-4.
  • 41. Chudinova, V.V., Zakharova, E.I., Alekseev, S.M., Chupin, V.V. and Evstigneeva, R.P. [Study of the interaction of alpha-tocopherol with phospholipids, fatty acids, and their oxygenated derivatives by (31)P-NMR spectroscopy]. Bioorg. Khim. 19 (1993) 243-249.
  • 42. Bagatolli, L.A. and Gratton, E. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys. J. 78 (2000) 290-305.
  • 43. Erin, A.N., Spirin, M.M., Tabidze, L.V. and Kagan, V.E. [Formation of alpha-tocopherol complexes with fatty acids. Possible mechanism of biomembrane stabilization by vitamin E]. Biokhimiia 48 (1983) 1855-1861.
  • 44. Erin, A.N., Spirin, M.M., Tabidze, L.V. and Kagan, V.E. Formation of alpha-tocopherol complexes with fatty acids. A hypothetical mechanism of stabilization of biomembranes by vitamin E. Biochim. Biophys. Acta 774 (1984) 96-102.
  • 45. Kagan, V.E. and Quinn, P.J. The interaction of alpha-tocopherol and homologues with shorter hydrocarbon chains with phospholipid bilayer dispersions. A fluorescence probe study. Eur. J. Biochem. 171 (1988) 661- 667.
  • 46. Urano, S., Shichita, N. and Matsuo, M. Interaction of vitamin E and its model compounds with unsaturated fatty acids in homogeneous solution. J. Nutr. Sci. Vitaminol. (Tokyo) 34 (1988) 189-194.
  • 47. Chudinova, V.V., Zakharova, E.I., Alekseev, S.M. and Evstigneeva, R.P. [Interaction of vitamin E (alpha-tocopherol) with oxygenated fatty acid derivatives]. Bioorg. Khim. 19 (1993) 505-511.
  • 48. Salgado, J., Villalain, J. and Gomez-Fernandez, J.C. Alpha-tocopherol interacts with natural micelle-forming single-chain phospholipids stabilizing the bilayer phase. Arch. Biochem. Biophys. 306 (1993) 368-376.
  • 49. Bourgeois, C.F., George, P.R. and Cronenberger, L.A. Automated determination of alpha-tocopherol in food and feed. Part 2. Continuous flow technique. J. Assoc. Anal. Chem. 67 (1984) 631-634.
  • 50. Tiurin, V.A., Kagan, V.E., Serbinova, E.A., Gorbunov, N.V. and Erin, A.N. [The interaction of alpha-tocopherol with phospholipid liposomes: the absence of transbilayer mobility]. Biull. Eksp. Biol. Med. 102 (1986) 689- 692.
  • 51. Urano, S., Iida, M., Otani, I. and Matsuo, M. Membrane stabilization of vitamin E; interactions of alpha-tocopherol with phospholipids in bilayer liposomes. Biochem. Biophys. Res. Commun. 146 (1987) 1413-1418.
  • 52. Urano, S., Yano, K. and Matsuo, M. Membrane-stabilizing effect of vitamin E: effect of alpha-tocopherol and its model compounds on fluidity of lecithin liposomes. Biochem. Biophys. Res. Commun. 150 (1988) 469-475.
  • 53. Wassall, S.R., Phelps, T.M., Wang, L.J., Langsford, C.A. and Stillwell, W. Membrane stabilization by vitamin E: magnetic resonance studies of the interaction of alpha-tocopherol with fatty acid acyl chains in phospholipid model membranes. Prog. Clin. Biol. Res. 292 (1989) 435-444.
  • 54. Wang, X. and Quinn, P.J. Vitamin E and its function in membranes. Prog. Lipid. Res. 38 (1999) 309-336.
  • 55. Srivastava, S., Phadke, R.S. and Govil, G. Effect of incorporation of drugs, vitamins and peptides on the structure and dynamics of lipid assemblies. Mol. Cell. Biochem. 91 (1989) 99-109.
  • 56. Bellemare, F. and Fragata, M. Transmembrane distribution of alphatocopherol in single-lamellar mixed lipid vesicles. J. Membr. Biol. 58 (1981) 67-74.
  • 57. Kagan, V.E., Bakalova, R.A., Serbinova, E.E. and Stoytchev, T.S. Fluorescence measurements of incorporation and hydrolysis of tocopherol and tocopheryl esters in biomembranes. Methods Enzymol. 186 (1990) 355-367.
  • 58. Bally, M.B., Mayer, L.D., Loughrey, H., Redelmeier, T., Madden, T.D., Wong, K., Harrigan, P.R., Hope, M.J. and Cullis, P.R. Dopamine accumulation in large unilamellar vesicle systems induced by transmembrane ion gradients. Chem. Phys. Lipids 47 (1988) 97-107.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-f4eed02c-20a7-4879-be6f-c7e71779e76e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.