PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 02 | 1 |

Tytuł artykułu

Erythrocytes vesiculate at high pH

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Human erythrocytes were incubated at alkaline pH. In samples equilibrating within 60 min to pH 11 erythrocytes underwent prelytic vesiculation (fragmentation). Erythrocytes developed large (diameter often 1-2 µm) hemoglobin-filled blebs which could be released to the outer medium as hemoglobin containing vesicles. It is suggested that the described vesiculation at high pH occurs due to an uncoupling of the membrane skeleton from the lipid bilayer. Due to the uncoupling from the skeleton the erythrocyte lipid bilayer may behave similar to the membrane of a giant lipid vesicle.

Wydawca

-

Rocznik

Tom

02

Numer

1

Opis fizyczny

p.9-13,fig.

Twórcy

  • Abo Akademi University, FIN-20520, Abo-Turku, Finland
autor

Bibliografia

  • 1. Ponder, E. In Hemolysis and Related Phenomena. Grune and Stratton Inc., New York (1948).
  • 2. Bessis, M. An illustrated classification and its rational. In Red Cell Shape; Physiology, Pathology, Ultrastructure (Bessis, M., Weed, R.I. and Leblond, P.F., eds), Springer-Verlag, Heidelberg, (1973) 1-24.
  • 3. Weed, R.I. and Chailley, B. Calcium-pH interactions in the production of shape change in erythrocytes. In Red Cell Shape; Physiology, Pathology, Ultrastructure (Bessis, M., Weed, R.I. and Leblond, P.F., eds), Springer-Verlag, Heidelberg, (1973) 55-67.
  • 4. Gedde, M.M., Yang, E. and Huestis, W.H. Shape response of human erythrocytes to altered cell pH. Blood 86 (1995) 1595-1599.
  • 5. Leonards, K.S. and Ohki, S. Isolation and characterization of large (0.5-1.0 µm) cytoskeleton-free vesicles from human and rabbit erythrocytes. Biochim. Biophys. Acta 728 (1983) 383-393.
  • 6. Wagner, G.M., Chiu, D, T.-Y., Yee, M.C. and Lubin, B.H. Red cell vesiculation-a common membrane physiological event. J. Lab. Clin. Invest. 108 (1996) 315-324.
  • 7. Brumen, M., Gros, M., Vrhovec, S., Svetina, S. and Zeks, B. Release of vesicles from human erythrocytes, Effects of temperature and pH. Folia Haematol. 114, (1987) 496- 498.
  • 8. Gros, M., Vrhovec, S., Brumen, M., Svetina, S. and Zeks, B. Low pH induced shape changes and vesiculation of human erythrocytes. Gen. Physiol. Biophys. 15 (1996) 145- 163.
  • 9. Isomaa, B., Hägerstrand , H. and Paatero, G. Shape transformations induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta 899 (1987) 93-103.
  • 10. Hägerstrand, H. and Isomaa, B. Vesiculation induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta 982 (1989) 179-186.
  • 11. Steck, T.L. Red cell shape. In Cell Shape. Determinants, Regulation and Regulatory Role. (Stein, W.D. and Brooner, F., eds). Academic Press. (1989) 205-246.
  • 12. Low, P.S., Willardson, B.M., Mohandas, N., Rossi, M. and Shohet, S. Contribution of band 3-ankyrin interaction to erythrocyte membrane mechanical stability. Blood 77 (1991) 1581-1586.
  • 13. Paulitschke, M., Nash, G.B., Anstee, D.J., Tanner, M.J.A. and Gratzer, W.B. Perturbation of blood cell membrane rigidity by extracellular ligands. Blood 86 (1995) 342-348.
  • 14. Lutz, H.U., Liu, S-C. and Palek, J. Release of spectrin-free vesicles from human erythrocytes during ATP depletion. I. Characterization of spectrin-free vesicles. J. Cell. Biol. 73 (1977) 548-560.
  • 15. Lelkes, G. and Fodor, I. Formation of large, membrane skeleton-free erythrocyte vesicles as a function of the intracellular pH and temperature. Biochim. Biophys. Acta 1065 (1991) 135-144.
  • 16. Hägerstrand, H. and Isomaa, B. Lipid and protein composition of exovesicles released from human erythrocytes following treatment with amphiphiles. Biochim. Biophys. Acta 1190 (1994) 409-415.
  • 17. Yamaguchi, T., Yamada, S. and Kimoto, E. Effects of cross-linking of membrane proteins on vesiculation induced by dimyristoylphosphatidylcholine in human erythrocytes. J. Biochem. 115 (1994) 659-663.
  • 18. Iglic, A., Svetina, S. and Zeks, B. Depletion of membrane skeleton in red blood cell vesicles. Biophys. J. 69 (1995) 274-279.
  • 19. Tocanne, J-F. and Teissie, J. Ionization of phospholipids and phospholipid-supported interfacial lateral diffusion of protons in membrane model system. Biochim. Biophys. Acta 1031 (1990) 111-142.
  • 20. DeWolf, C., McCauley, P. and Pinder, J.C. Regulation of the mechanical properties of the red blood cell membrane by protein-protein and protein-lipid interactions. Cell. Mol. Biol. Lett. 1 (1996) 89-96.
  • 21. Sikorski, A. and Bialkowska, K. Interactions of spectrin with membrane intrinsic domain. Cell. Mol. Biol. Lett. 1 (1996) 97-104.
  • 22. Roelofsen, B. and Op den Kamp, J.A.F. Plasma membrane phospholipid asymmetry an its maintenance: The human erythrocyte as a model. Curr. Top. Membr. 40 (1994) 7-46.
  • 23. Sackmann, E. The seventh Datta lecture. Membrane bending energy concept of vesicle- and cell-shapes and shape-transitions FEBS Lett. 346 (1994) 3-16.
  • 24. Svetina, S. and Zeks, B. Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur. Biophys. J. 17 (1989) 101-111.
  • 25. Iglic, A. A possible mechanism determining the stability of spiculated red blood cells. J. Biomechanics 30 (1997) 35-40.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-f3d5edac-d836-4a13-a36b-d8c94694ad0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.