PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 05 | 1 |

Tytuł artykułu

Surface modified liposomes by coating with charged hydrophilic molecules

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The design of liposomes with a hydrophilic/steric barrier at their bilayer surface allows the modification of their pharmacokinetics and reduces the uptake by the RES. Liposomes can be coated by hydrophilic molecules such as polysaccharides, which disguise the vesicle surface by creating a three-dimensional matrix near them and prevent the binding of plasma proteins and their recognition by some cellular receptors. All these considerations, and previous results obtained in our laboratory showing the formation of stable GAG-liposome complexes, have lead us to think about the use of the negatively charged glycosaminoglycans (GAGs), alternately to other molecules such as the monosialoganglioside GM1, more expensive, or polyethylene glycol (PEG-PE) that can disturb the structural organization of the bilayer. The present paper describes the effect of the incorporation of GAGs to phospholipid vesicles, in relation to their electrical and permeability properties. The results obtained show that there is an effective coating of the bilayer surface when glycosaminoglycans are added to liposome suspensions. The shielding of the negative surface charge by the neutral hyaluronic acid, in the absence of calcium, and the increase in the negative charge when the negative polyelectrolytes chondroitin sulfate, heparin or dextran sulfate are added to calcium-containing liposome suspensions account for the formation of stable liposome-GAG complexes. Moreover, the reduced permeability of the GAG-coated liposomes points out on their ability to hold encapsulated drugs and, so, their potential usefulness as drug-sustained release carriers. The hydrophilic coating will give to these liposomal carriers long-circulating properties.

Wydawca

-

Rocznik

Tom

05

Numer

1

Opis fizyczny

p.19-33,fig.

Twórcy

  • University of Barcelona, Marti i Franques 1, 08028-Barcelona, Spain
autor

Bibliografia

  • 1. Betageri, G. V., Jenkins, S. A. and Parsons, D. L. Liposome Drug Delivery Systems Technomic Publishing Company, Inc., Lancaster, Pennsylvania 1993.
  • 2. Kadir, F., Zuidema, J. and Crommelin, D. J. A. Liposomes as drug delivery systems for intramuscular and subcutaneous injection, in: Drug Carriers in Medical Applications (Rolland, ed.), New York, Marcel Dekker, 1993, 165-198.
  • 3. Torchilin, V. P., Trubetskoy, V. S., Milshteyn, A. M., Canillo, J., Wolf, G. L., Papisov, M. I., Bogdanov, A. A., Narula, J., An Khaw, B and Omelyanenko, V. G. Targeted delivery of diagnostic agents by surface-modified liposomes. J. Controlled Release 28 (1994) 45-58.
  • 4. Unger, E., Fritz, T., Wu, G., Shen, D., Kulik, B., New, T., Crowell, M. and Wilke, N. Liposomal MR contrast agents. J. Liposome Res. 4 (1994) 811-834.
  • 5. Snippe, H. and Verheul, A. F. M. Liposome as immunoadjuvants for saccharide antigens. J. Liposome Res. 5 (1995) 453-465.
  • 6. Antimisiaris, S. G., Jayasekera, P. and Gregoriadis, G. Liposomes as vaccine carriers. Incorporation of soluble and particulate antigens in giant vesicles. J. Immunol. Methods 166 (1993) 271-280.
  • 7. Li, S. and Huang, L. Protamine sulfate provides enhanced and reproducible intravenous gene transfer by cationic liposome/DNA complex. J. Liposome Res. 7 (1997) 207-219.
  • 8. Ross, P. C., Hensen, M. L., Supabphol, R. and Hui, S. V. Multilamellar cationic liposomes are efficient vectors for in vitro gene transfer in serum. J. Liposome Res. 8 (1998) 499-520.
  • 9. Vanlerberghe, G. Liposomes in cosmetics: How and why?, in: Nonmedical Applications of Liposomes vol IV (Lasic and Barenholz eds.), Boca Raton, CRC Press, 1996, 77-90.
  • 10. Senior, J. Fate and behaviour of liposomes in vivo: a review of controlling factors. CRC Crit. Reviews Therapeut. Drug Carrier Systems 37 (1987) 123-193.
  • 11. Storm, G. and Woodle, M. C. Long circulating liposome therapeutics: from concept to clinical reality, in: Long Circulating Liposomes (Woodle, M. C. and Storm, G. eds.), Berlin, Springer-Verlag, 1998, 3-16.
  • 12. Nässander, U. K., Storm, G.. Peeters, P. A. M. and Crommelin, D. J. A. Liposomes, in: Biodegradable Polymers as Drug Delivery Systems (Chasin, M. and Langer, R. eds.), New York, Marcel Dekker, 1990, 261-238.
  • 13. Ilium, L., Jacobsen, L. O., Müller, R. H:, Mak, E. and Davis, S. S. Surface characteristics and the interaction of colloidal particles with mouse peritoneal macrophages. Biomaterials 8 (1987) 113-117.
  • 14. Woodle, M. C. and Lasic, D. D. Sterically stabilized liposomes. Biochim. Biophys. Acta 1113 (1992) 171-199.
  • 15. Gabizon, A. and Papahadjopoulos, D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc. Natl. Acad. Sci. U.S.A. 85 (1988) 6949-6953.
  • 16. Ghosh, P. C. and Bachhawat, B. K. Effect of surface modification with glycolipids and polysaccharides on in vivo fate of liposomes., in: Stealth Liposomes (Lasic, D. and Martin, F., eds.), CRC Press, Inc., Boca Raton, 1995, 13-24.
  • 17. Liu, D., Mori, A. and Huang, L. Role of liposome size and RES bolckade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim. Biophys. Acta 1104 (1992) 95-101.
  • 18. Torchilin, V. P., Omelyanenko, V. O., Papisov, M. I., Bogdanov, Jr. A. A., Trubetskoy, V. S., Herron, J. N. and Gentry, C. A. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim. Biophys. Acta 1195 (1994) 11-20.
  • 19. Woodle, M. C., Newman, M. S. and Cohen, J. A. Sterically stabilized liposomes: physical and biological properties. J. Drug Targeting 2 (1994) 397-403.
  • 20. Jones, M. N. The surface properties of phospholipid liposomes systems. Adv. Colloid Interface Sci. 54 (1995) 93-128.
  • 21. Jones, M. C. The surface properties of phospholipid liposome systems and their characterization. Adv. Colloid Interface Sci. 54 (1995) 93-128.
  • 22. Papahadjopoulos, D., Allen, T. M., Gabizon, A., Mayhew, E., Matthay, K., Huang, S. K., Lee, K. D., Woodle, M. C., Lasic, D. D., Redemann, C. and Martin, F. J.. Sterically stabilized liposomes: Improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl. Acad. Sci. U.S.A. 88 (1991) 11460-11464.
  • 23. Vaage, J., Mayhew, E., Lasic, D. and Martin, F. Therapy of primary and metastatic mouse mammary carciniomas with doxorubicin encapsulated in long circulating liposomes. Int. J. Cancer 51 (1992) 942-948.
  • 24. Mayhew, E. G., Lasic, D., Babbar, S. and Martin, F. J. Pharmacokinetics and antitumor activity of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycol-derivatized phospholipid. Int. J. Cancer 51 (1992) 302-309.
  • 25. Mora, M., Gutierrez, M. E., De Madariaga, M. A., Beceiro, A., Casado, F. and Gomis, P. Effect of liposome-encapsulated glycosaminoglycans on dermal microcirculation. J. Liposome Res. 3 (1993) 159-160.
  • 26. Cevc, G. Electrostatic characterization of liposomes. Chem. Phys. Lipids 64 (1993) 163-186.
  • 27. Hunter, R. J. Zeta Potential in Colloid Science. Principles and applications. Academic Press, London, 1988.
  • 28. Domingo, J. C., Rosell, F., Mora, M. and De Madariaga, M. A. Importance of the purification grade of 5(6)-carboxifluorescein on the stability and properties of N-acylphosphatidylethanolamine liposomes. Biochem. Soc. Trans. 17 (1989) 997-1000.
  • 29. Ware, B. R. The application of laser light scattering to the study of biological motion. NATO ASI Ser. A 59 (1983) 89-122.
  • 30. Weinstein, J. N., Ralston, E., Leserman, L. D., Klausner, R. D., Dragsten, P., Henkart, P. and Blumental, R. Self-quenching of carboxifluorescein fluorescence: uses in studying liposome stability and liposome-cell interaction, in: Liposome Technology (Gregoriadis, G., Ed.), vol. 3, CRC Press, Boca Raton, 1984, 184-204.
  • 31. Cevc, G. Electrostatic characterization of liposomes. Chem. Phys. Lipids 64 (1993) 163-186.
  • 32. Arnold, K., Ohki, S. and Krumbiegel, M. Interaction of dextran sulfate with phospholipid surfaces and liposome aggregation and fusion. Chem. Phys. Lipids 55 (1990) 301-307.
  • 33. Steffan, G., Wulff, S. and Galla, H. J. Divalent cation-dependent interaction of sulfated polysaccharides with phosphatidylcholine and mixed phosphatidylcholine/phosphatidylglycerol liposomes. Chem. Phys. Lipids 74 (1994) 141-150.
  • 34. Casu, B. Structural features and binding properties of chondroitin sulfates, dermatan sulfate and heparan sulfate. Seminars in Thrombosis and Hemostasis 17 (1991) 9-14.
  • 35. Krumbiegel, M. and Arnold, K. Microelectrophoresis studies of the binding of glycosaminoglycans to phosphatidylcholine liposomes. Chem. Phys. Lipids 54 (1990) 1-3.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-f2dfb5f6-a8d6-43dd-b366-1e664770f5ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.