PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 09 | 4A |

Tytuł artykułu

A single-step method of liposome preparation

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
All the liposome preparation protocols, which involve drug encapsulation are multi-step processes, i.e. they consist of one or several steps of preparation and homogenization. The conditions of converting all lipids into vesicles smaller than 200 nm were determined by replacing ultrasonication with mechanical stirring of the buffer and solution of lipids in a low-boiling point organic solvent or solvents in a simple preparator. Preferably, the process should be carried out at a temperature higher than the temperature of the gel/fluid phase transition (Tm), and higher than the boiling point of the organic solvent(s) used to obtain the lipid solution. For many lipid membrane compositions, the products of preparation are as follows: a dominant fraction of unilamellar vesicles (vesicle of diameter smaller than 200 nm) and a fraction of much larger multivesicular or multilamellar vesicles, easily separated by simple centrifugation at 15000´g. If PEG-phosphatidylethanolamine or cholesteryl palmitate are additional membrane components, multivescular or multilamellar vescicles are virtually absent in the final product, of a single-step process and all the used lipids were quantitatively converted into vesicles smaller than 200 nm in diameter.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

09

Numer

4A

Opis fizyczny

p.603-615,fig.,ref.

Twórcy

autor
  • Medical University of Silesia, 41-200 Sosnowiec, Poland

Bibliografia

  • 1. Kulkarni, S.B., Betageri, G.V. and Singh, M. Factors affecting microencapsulation of drugs in liposomes. J. Microencapsul. 12 (1995) 229-246.
  • 2. Batzri, S. and Korn, E. Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta 298 (1973) 1015-1019.
  • 3. Kramer, J.M.H., Esker, M.W.J., Pathmamanoharan, C., and Wiersena, P.H. Vesicles of variable diameter prepared by a modified injection method. Biochemistry 17 (1977) 3932-3935.
  • 4. Szoka, F. and Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA 75 (1978) 4194-4198.
  • 5. Kim, S. and Martin, G.M. Preparation of cell-size unilamellar liposomes with high captured volume and defined size distribution. Biochim. Biophys. Acta 646 (1981) 1-9.
  • 6. Kim, S., Turker, M.S., Chi, E., Sela, S. and Martin, G.M. Preparation of multivesicular liposomes. Biochim. Biophys. Acta 728 (1983) 339-348.
  • 7. Buboltz, J.T. and Feigenson, G.W. A novel strategy for preparation of liposomes: rapid solvent exchange. Biochim. Biophys. Acta 1417 (1999) 132-245.
  • 8. Zawada Z. Liposomes coated liposomes. Chromatography and fluorescence study. 3rd European Biophysics Congress, September 9-13., München, Germany, Eur. Biophys. J. 29 (2000) 98.
  • 9. Singleton, W.S., Gray, M.S., Brown, M.L. and White, J.L. Chromatograpically homogeneous lecithin from egg phospholipid. J. Am. Oil Chem. Soc. 42 (1965) 53-55.
  • 10. Snyder, S.L. and Vannier, W.E. Immunologic response to protein immobilized on the surface of liposomes via covalent azo-bonding. Biochim. Biophys. Acta 772 (1984) 288-294.
  • 11. Berger, N., Sachse, A., Bender, J., Schubert, R. and Brandl, M. Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int. J. Pharm. 223 (2001) 55-68.
  • 12. Hellen, R.M. Calorimetric estimation of phospholipids in aqueous dispersions, J. Biochem. Biophys. Methods 2 (1980) 251-255.
  • 13. Reynolds, J.A., Nozaki, Y. and Tanford, C. Gel-exclusion chromatography on S1000 Sephacryl: application to phospholipid vesicles. Anal. Biochem. 130 (1983) 471-474.
  • 14. McIntyre, J.C. and Sleight, R.G. Fluorescence assay for phospholipid membrane asymmetry. Biochemistry 30 (1991) 11819-11827.
  • 15. Langner, M. and Hui, S.W. Dithionite penetration through phospholipid bilayers as a measure of defects in lipid molecular packing. Chem. Phys. Lipids 65 (1993) 23-30.
  • 16. Lentz, B.R., Talbot, W., Lee, J. and Zheng, L. Transbilayer lipid redistribution accompanies poly(ethylene glycol) treatment of model membranes but is not induced by fusion. Biochemistry 36 (1997) 2076-2083.
  • 17. Angeletti, C. and Nichols, J.W. Dithionite quenching rate measurement of the inside-outside membrane bilayer distribution of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled phospholipids. Biochemistry 37 (1998) 15114-15119.
  • 18. Needham, D. and Nunn, R.S. Elastic deformation and failure of lipid membranes containing cholesterol. Biophys. J. 58 (1990) 997-1009.
  • 19. Grit, M. and Crommelin, D.J.A. Chemical stability of liposomes: implications for their physical stability. Chem. Phys. Lipids 64 (1993) 3-18.
  • 20. Harbich, W. and Helfrich, W. Phases of egg lecithin in an abundance of water. Chem. Phys. Lipids 55 (1990) 191-205.
  • 21. Klösgen, B. Conformations of fluid lipid membranes. in: Lipid bilayers. Structure and interactions (Katsaras, J. and Gutberlet, T. Eds.), SpringerVerlag, Berlin, Heidelberg, New York, 2001, 47-88.
  • 22. Prosser, R.S. and Sanders, C. Solid state NMR approaches to the study of membrane proteins in magnetically aligned model membranes. in: Lipid bilayers. Structure and interactions (Katsaras, J. and Gutberlet, T. Eds), Springer-Verlag, Berlin, Heidelberg, New York, 2001, 207-231.
  • 23. Edwards, K., Johnsson, M., Karlsson, G. and Silvander, M. Effect of polyethyleneglycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes. Biophys. J. 73 (1997) 258-266.
  • 24. Belsito, S., Bartucci, R., Montesano, G., Marsh, D. and Sportelli, L. Molecular and mesoscopic properties of hydrophilic polymer-grafted phospholipids mixed with phosphatidylcholine in aqueous dispersion: interaction of dipalmitoyl N-poly(ethylene glycol)phosphatidylethanolamine with dipalmitoylphosphatidylcholine studied by spectrophotometry and spinlabel electron spin resonance. Biophys. J. 78 (2000) 1420-1430.
  • 25. Viguera, A.R., Mencia, M. and Goni, F.M. Time-resolved and equilibrium measurements of the effects of poly(ethylene glycol) on small unilamellar phospholipid vesicles. Biochemistry 32 (1993) 3708-3713.
  • 26. Hristova, K., Kenworthy, A. and Mcintosh, T.J. Effect of bilayer composition on the phase behavior suspensions containig poly(ethylene glycol)-lipids. Macromolecules 28 (1995) 7693-7699.
  • 27. Valic, M.I., Gorrissen, H., Cushley, R.J. and Bloom, M. Deuterium magnetic resonance study of cholesteryl esters in membranes. Biochemistry 18 (1979) 854-859.
  • 28. Gorrisen, H., Tulloch, A.P. and Cushley, R.J. Deuterium magnetic resonance of selectively deuterated cholesteryl esters in phosphatidylcholine vesicles. Biochemistry 19 (1980) 3422-3429.
  • 29. Gorrissen, H., Mackay, A.L., Wassall, S.R., Valic, M.I. and Tulloch, A.P. Deuterium magnetic resonance of selectively deuterated cholesteryl esters in dipalmitoyl phosphatidylcholine dispersions. Biochim. Biophys. Acta 644 (1981) 266-272.
  • 30. Lyte, M. and Shnitzky, M. Cholesteryl-phosphoryl-choline in lipid bilayers. Chem. Phys. Lipids 24 (1979) 45-55.
  • 31. Wagner, A., Vorauer-Uhl, K. and Katinger, H. Liposomes produced in a pilot scale: production, purification and efficiency aspects. Eur. J. Pharm. Biopharm. 54 (2002) 213-219.
  • 32. Mayer, L.D., Hope, M.J., Cullis, P.R. and Janoff, A.S. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim. Biophys. Acta 817 (1985) 193-196.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-f1b38bc2-78ab-4e78-87fa-6edaacfb4f93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.