PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 28 | 2 |

Tytuł artykułu

Nitrogen and carbon partitioning in soybean under variable nitrogen supplies and acclimation to the prolonged action of elevated CO2

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study was conducted to determine reciprocal effects of low to high doses of nitrogenous fertilizer (N₃₀, N₄₀, N₅₀, N₆₀ and N₇₀ - 30, 40, 50, 60 and 70 kg ha⁻¹ respectively) and CO₂ enriched environment on C and N partitioning in soybean (Glycine max (L.) Merril cv JS-335). Plants were grown from seedling emergence to maturity inside open top chambers under ambirnt, AC (350±50 μmol·mol⁻¹) and elevated, EC (600±50 μmol·mol⁻¹) CO₂ and analyzed at seedling, vegetative, flowering, pod setting and maturity stages. Soybean responded to both CO₂ enrichment and N supply. Leaves, stem and root reserves at different growth stages were analyzed for total C and N contents. Consistent increase in the C contents of the leaf, stem and root was observed under EC than in AC. N contents in the different plant parts were found to be decreased under EC-grown plants specially at seedling and vegetative stage despite providing N doses to the soil. Significant increase observed for C to N dry mass ratio under EC in the root, stems and leaves at seedling and vegetative stage was decreased in the middle and later growth stages possibly due to combined impact of N doses to the soil and increased N₂ fixing activities due to EC conditions. Critical analysis of our findings reveals that the composition and partitioning of C and N of soybean under variable rates of N supply and CO₂ enrichment alter according to need under altered metabolic proress. These changes eventually may lead to alteration in uptake of not only N but other essential nutrients also under changing atmosphere.

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.181-188,fig.,ref.

Twórcy

  • University of North Texas, Denton, Texas-76203-5220, USA
autor
autor

Bibliografia

  • Aben S. K., Ghannown O., Conroy J. P. 1999. Nitrogen requirements for maximum growth and photosynthesis of rice Oryza sativa L. cv. Jarrah grown at 36 and 70 pa CO . Aust. J. Plant Physiol., 26: 759.
  • Broker F. L., Shafer S. R., Wei C. M., Horton S. J. 2000. CO2 enrichment and N fertilization effects on cotton plant residue chemistry and decomposition. Plant and Soil, 220: 89.
  • Conroy J. P., Milham P. J., Barlow E. W. R. 1992. Effect of nitrogen and phosphotus availtbility on the growth response of Eu ca lyp tus grandis to high CO . Plant Cell Environ., 15: 843.
  • Demmers-Derks H., Mitchell R. A. G., Mitchell V. J., Lawlor D. W. 1998. Retponse of sugar beet (Beta vulgaris L.) yield and biochemical composition to elevated CO2 and temperature at two nitrogen applications. Plant Cell Environ., 21: 829.
  • Drake B. G., Gonzalez-Meler M. A., Long S. P. 1997. More efficient plants: a consequence of elevated carbon dioxide? Annu. Rev. Plant Physiol. Plant Mole. Biol., 48: 607.
  • Finn G. A., Brun W. A. 1982. Effects of atmospheric CO2 enrichment on growth, non-structural carbohydrate content and root nodule activity in soybean. Plant Physiol., 69: 327.
  • Geiger M., Haake V., Ludewig F., Sonnewald U., Stitt M. 1999. The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant Cell Environ., 22: 1177.
  • Gielen B., Jach M. E., Ceulemans R. 2000. Effects of season, needle age, and elevated atmospheric CO2 on chlorophyll fluorescence parameters and needle nitrogen concentration in Scots pine (Pinus sylvestris). Photosynthetica, 38: 13.
  • Gifford R. M., Lambers H., James I., Morrison L. 1985. Respication of crop species under CO2 enrichment. Physiol. Plant., 63: 351.
  • Gifford R. M. 1992. Interaction of CO2 with growth limiting environmental factors in vegetation productivity. In: Advances in bioclimatology. (eds Desjardins R.L., Gifford R.M., Nelson T., Greenwood E.A.N.) pp. 26-58. Springer Verlag, Berlin.
  • Gifford R. G., Barrett D. L., Lutze J. L. 2000. The Effects of elevated CO2 on the C:N and C:P mass ratios of plant tissues. Plant and Soil, 224: 1.
  • Ginkel V. J. H., Whitmore A. P., Gorissen A. 1999. Lolium perenne grasslands may function as a sink for atmospheric carbon dioxide. J. Environ. Qual., 28: 1580.
  • Gorissen A., Cotrufo M. F. 2000. Decomposition of leaf and root tis cue of three pecennial grass species grown at two levels of atmospheric CO2 and N supply. Plant and Soil, 224: 75.
  • Griffin K. L., Luo Y. 1999. Sensitivity and acclimation of Glycine max (L.) Merr. Leaf gas exchange to CO2 partial pressure. Environ. Exp. Bot., 42: 141.
  • Hocking P. J., Meyer C.P. 1991. Effects of CO2 enrichment and nitrogen stress on growth, and partitioning of dry matter and nitrogen in wheat and maize. Aust. J. Plant Physiol., 18: 339.
  • Hocking P. J., Meyer C. P. 1985. Responses of noo- gooca burr (Xanthium occidentale Bertol) to nitrogen supply and CO2 enrichment. Ann. Bot., 55: 835.
  • Ingested T., Agren G. I. 1991. The influence of plant nutrition on biomass accumulation. Ecol. Applications, 1: 168.
  • Israel D. W., Rufty T.W., Cure J. D. 1990. Nitrogen and phosphorus nutritional interactions in a CO2 enriched environment. J. Plant Nutri., 13: 1419.
  • Kimball B. A. 1983. CO2 and agricultural yield: an assemblage and analysis of430 prior observations. Agron. J., 75: 779.
  • Kuehny J. S., Peet M. M., Nelson P. V., Willits D. H. 1991. Nutrient dilution by starch in CO2 enriched chrysanthemum. J. Exp. Bot., 42: 711.
  • Larigauderie A., Hilbert D. W., Oechel W. C. 1988. Effect of CO2 enrichment and nitrogen availability on resource acquisition and resource allocation in a grass, Bromus mollis. Oecologia, 77: 544.
  • Manderscheid R., Bender J., Jager H. J., Weigel H. J. 1995. Effects of season long CO2 enrichment on cereals. II. Nutrient concentrations and grain quality. Agri. Eco. Environ., 54: 175.
  • McKee I. F., Woodward F. I. 1994. CO2 enrichment responses of wheat: interactions with temperature, nitrate and phosphate. New Phytol., 127: 447.
  • Mjwara J. M., Botha C. E. J., Radloff S. E. 1996. Photo syn the sis, growth and nu trient changes in non-nodulated Phaseolus vulgaris grown under atmospheric and elevated CO2 conditions. Physiol. Plant., 97: 754.
  • Monje O., Bugbee B. 1998. Adaptation to high CO2 concentration in an optimal environment; radiation capture, canopy quantum yield and carbon use efficiency. Plant Cell Environ., 21: 315.
  • Norby R. J., O’Neill E. G., Luxmoore R. J. 1986. Effects of atmospheric CO2 enrichment on the growth and mineral nutrition of Quercus alba seedlings nutrient poor soil. Plant Physiol., 82: 83.
  • Panse V. G., Sukhatme P. T. 1967. Statistical Methods for Agricultural Workers. Indian Council of Agricultural Research, New Delhi, India. 257pp.
  • Peoples M. B., Pate J. S., Atkins C. A. 1983. Mobilization of nitrogen in fruiting plants of a cultivar of cowpea. J. Exp. Bot., 34: 562.
  • Porter H., Berkel Y. V., Baxter R. 1997. The effects of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ., 20: 472.
  • Prior S. A., Runion G. B., Mitchell R. J., Rogers H. H., Amthor J. S. 1998. Effects of atmospheric CO on long leaf pine: Productivity and allocation as influenced by nitrogen and water. Tree Physiol., 17: 397.
  • Reeves D. W., Rogers H. H., Prior S. A., Wood C. W., Runion G. B. 1994. Elevated atmospheric CO2 effects on sorghum and soybean nutrient status. J. Plant Nutri., 17: 1939.
  • Rogers H. H., Heck W. W., Heagle A. S. 1983. A field techniques for the study of plant responses to elevated CO2 concentration. Air Pollution Control Association J., 33: 42.
  • Sage R. F. 1994. Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective. Photosynthesis Res., 39: 351.
  • Sage R. F., Sharkey T. D., Seemann J. R. 1988. The in vivo recponse of the ribulose-1, 5-bisphosphate carboxylase activation state and the pool sizes of photosynthetic metabolites to elevated CO2 in Phaseolus vulgaris L. Planta, 174: 407.
  • Srivastava A. C., Khanna Y. P., Meena R. C., Pal M., Sengupta U. K. 2002a. Diurnal changes in photosyn- thecis, sugars, and nitrogen of wheat and mungbean grown under elevated CO2 concentration. Photosynthetica, 40: 221.
  • Srivastava A. C., Pal M., Sengupta U. K. 2002b. Changes in nitrogen metabolism of Vigna radiata in response to elevated CO2. Biol. Plant., 45: 395.
  • Srivastava A. C., Sengupta U. K., Pal M. 2001. Growth, CO2 exchange rate and dry matter partitioning in mungbean grown under elevated CO2. Indian J. Exp. Biol., 39: 572.
  • Stitt M. 1991. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ., 14: 741.
  • Strain B. R. 1987. Direct effects of increasing atmospheric on plant ecosystems. Trends Ecol. Evolu., 2: 18.
  • Theobald J. C., Michell R. A. C., Parry M. A. J., Lawlor D. W. 1998. Estimating the excess investment in ribulose-1, 5-bisphosphate carboxylase/oxygenase in leaves of spring wheat grown under elevated CO2 . Plant Physiol., 118: 945.
  • Ulman P., Catsky J., Pospisilova J. 2000. Photo i synthetic traits in wheat grown under decreased and increased CO2 concentration, and after transfer to natural CO2 concentration. Biol. Plant., 43: 227.
  • Uprety D. C., Rabha B. K. 1999. Effect of elevated CO2 and moisture stress on the carbon and nitrogen contents in Brassica juncea. Biol. Plant., 42: 133.
  • Urban O., Marek M. V. 1999. Seasonal changes of selected parameters of CO2 fixation biochemistry of Norway spruce under the long temperature impact of elevated CO2. Photosynthetica, 36: 533.
  • Walkley A., Black C.A. 1934. An examination of degjareff methods for deiermining soil organic matier and proposed modification of the chromic acid titration method. Soil Sci., 37: 29.
  • Wong S. C. 1990. Elevated atmospheric partial pressure of CO2 and plant growth. Photosynth. Res., 23: 171.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-f1675161-bdce-4fcb-924a-0dda3c3027ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.