PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 66 | 03 |

Tytuł artykułu

Free fatty acid receptors and their physiological roles in the colon

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Free fatty acids (FFAs) are not only an important source of energy but they also play key roles in regulating various physiological responses. FFAs including short-chain fatty acids (SCFAs) have recently been demonstrated to act as ligands of several G-protein-coupled receptors (GPCRs) (FFA1, FFA2, FFA3, GPR84 and GPR120). FFA1 and GPR120 are activated by medium- and long chain fatty acids. GPR84 is activated by mediam-chain, but not long chain FFAs. On the other hand, FFA2 and FFA3 are both activated by SCFAs. Tissue distribution studies have indicated that FFA2 and FFA3 function as chemical sensors in the colon. For the involvement of SCFAs in the regulation of colonic motility, propionate and butyrate concentration- -dependently induced phasic and tonic contractions in rat colonic circular muscle. The responses were not observed in mucosal free preparation. Thus, FFA2 and FFA3 are important molecular devices to monitor the chemical composition in colonic lumen. For the local function of SCFAs, it should be stressed that individual SCFA has different mode of actions on colonic smooth muscles. These different effects may be due to the relative contribution of FFA2 and FFA3 on the control of intestinal muscle activity. In this article, we have reviewed the expression and functions of these molecules, especially FFA2 and FFA3 on the regulation of colonic motility.

Wydawca

-

Rocznik

Tom

66

Numer

03

Opis fizyczny

p.147-154,fig.,ref.

Twórcy

autor
  • University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
autor

Bibliografia

  • 1.Adachi T., Tanaka T., Takemoto K., Koshimizu T.-A., Hirasawa A., Tsujimoto G.: Free fatty acids administered into the colon promote the secretion of glucagon-like peptide-1 and insulin. Biochem. Biophys. Res. Commun. 2006, 340, 332-337.
  • 2.Bartoov-Shifman R., Rinder G., Bahar K., Rubins N., Walker M. D.: Regulation of the gene encoding GPR40, a fatty acid receptor expressed selectively in pancreatic â cells. J. Biol. Chem. 2003, 282, 23561-23571.
  • 3.Bergman E. N.: Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567-590.
  • 4.Bloemen J. G., Venema K., van de Poll M. C., Olde Damink S. W.: Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clinical Nutri. 2009, 28, 657-661.
  • 5.Briscoe C. P., Tadayyon M., Andrews J. L., Benson W. G., Chambers J. K., Eilert M. M., Ellis C., Elshourbagy N. A., Goetz A. S., Minnick D. T. et al.: The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem. 2003, 278, 11303-11311.
  • 6.Brown A. J., Goldsworthy S. M., Barnes A. A., Eilert M. M., Tcheang L., Daniels D., Muir A. I., Wigglesworth M. J., Kinghorn I., Fraser N. J., Pike N. B., Strum J. C., Steplewski K. M., Murdock P. R., Holder J. C., Marshall F. H., Szekeres P. G., Wilson S., Ignar D. M., Foord S. M., Wose A., Dowell S. J.: The orphan G protein-coupled receptor GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003, 278, 11312-11219.
  • 7.Brown A. J., Jupe S., Briscoe C. P.: A family of fatty acid binding receptors. DNA Cell Biol. 2005, 24, 54-61.
  • 8.Buchan A. M.: Nutrient tasting and signaling mechanism in the gut. III. Endocrine cell recognition of luminal nutrients. Am. J. Physiol. 1999, 277, G1103-G1107.
  • 9.Cherbut C., Ferrier L., Roze C., Anini Y., Blottiere H., Lecannu G., Galmiche J. P.: Short-chain fatty acids modify colonic motility through nerves and popypeptide YY release in the rat. Am. J. Physiol. 1998, 275, G1415-G1422.
  • 10.Dobbins R. L., Chester M. W., Stevenson B. E., Daniels M. B., Stein D. T., Garry J. D.: A fatty acid-dependent step is critically important for both glucose- and non-glucose-stimulated insulin secretion. J. Clin. Invest. 1998, 101, 2370-2376.
  • 11.Dockary G. J.: Luminal sensing in the gut: an over view. J. Physiol. Pharmacol. 2003, 54, (Suppl. 4), 9-17.
  • 12.Edfalk S., Steneberg P., Edlund H.: Gpr40 is expressed enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 2008, 57, 2280-2287.
  • 13.Eftimiadi C., Buzzi E., Tonetti M., Buffa P., Buffa D., van Steenbergen M. T., de Graaff J., Botta G. A.: Short-chain fatty acids produced by anaerobic bacrteria alter the physiological responses of human neutrophils to chemotactic peptide. J. Infect. 1987, 14, 43-53.
  • 14.Flodgren E., Olde B., Meidute-Abaraviciene S., Winzell M. S., Ahren B., Salehi A.: GPR40 is expressed in glucagon producing cells and affects glucagon secretion. Biochem. Biophys Res. Commun. 2007, 354, 240-245.
  • 15.Fredstrom S. B., Lampe J. W., Jung H. J. et al.: Apparent fiber digestibility and fecal short-chain fatty acid concentrations with ingestion of two types of dietary fiber. JPEN J. Parebter. Enteral Nutr. 1994, 18 (1), 14-19.
  • 16.Fukumoto S., Takewaki M., Yamada T., Fujimiya M., Manthy C., Voss M., Eubanks S., Harris M., Pappas T. N., Takahashi T.: Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol. 2003, 284, R1269-R1276.
  • 17.Furness J. B., Kunze W. A., Clerc N.: Nutrient tasting and signaling mechanisms in the gut. II. The intestine as sensory organ: neural, endocrine, and immune responses. Am. J. Physiol. 1999, 277, G922-G928.
  • 18.Ge H., Li X., Weiszmann J., Wang P., Baribault H., Chen J. L., Tian H., Li Y.: Activation of GPR43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 2008, 149, 4519-4526.
  • 19.Genuth S. M.: Whole body Metabolism. Physiology 4th ed. Berne R. M. and Levy M. N. eds. Mosby, Inc. 1998, p. 810.
  • 20.Gonzalez A., Sarna S. K.: Neural regulation of in vitro giant contractions in the rat. Am. J. Physiol. 2001, 281, G275-G282.
  • 21.Gravena C., Mathias P. C., Ashcroft S. J.: Acute effects of fatty acids on insulin secretion from rat and human islets of Langerhans. J. Endocrinol. 2002, 173, 73-80.
  • 22.Hallert C., Bjorck I., Nyman M. et al.: Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study. Inflamm. Bowel Dis. 2003, 9 (2), 116-121.
  • 23.Hardy S., St-Onge G. G., Joly E., Langelier Y., Prentki M.: Oleate promotes the proliferation of breast cancer cells via the G protein-coupled receptor GPR40. J. Biol. Chem. 2005, 280, 13285-13291.
  • 24.Hirasawa A., Tsumaya K., Awaji T., Katsuma S., Adachi T., Yamada M., Sugimoto Y., Miyazaki S., Tsujimoto G.: Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 2005, 11, 90-94.
  • 25.Hofer D., Asan E., Drenckhahn D.: Chemosensory perception in the gut. News Physiol. Sci. 1999, 14, 18-23.
  • 26.Hong Y. H., Nishimura Y., Hishikawa D., Tsuzuki H., Miyahara H., Gotoh C., Choi K. C., Feng D. D., Chen C., Lee H. G., Katoh K., Roh S. G., Sasaki S.: Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 2005, 146, 5092-5099.
  • 27.Hubel K. A., Russ L.: Mechanisms of the secretory response to luminal propionate in rat descending colon in vitro. J. Auton. Nerv. Sys. 1993, 43, 219-230.
  • 28.Itoh Y., Kawamata Y., Harada M., Kobayashi M., Fujii R., Fukushima S., Ogi K., Hosoya M., Tanaka Y., Uejima H., et al.: Free fatty acids regulate insulin secretion from pancreatic b cells through GPR40. Nature 2003, 322, 173-176.
  • 29.Karaki S.-I., Mitsui R., Hayashi H., Kato I., Sugiya H., Iwanaga T., Furness J. B., Kuwahara A.: Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 2006, 324, 353-360.
  • 30.Karaki S.-I., Tazoe H., Hayashi H., Kashiwabara H., Tooyama K., Suzuki Y., Kuwahara A.: Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J. Mol. Histol. 2008, 39, 135-142.
  • 31.Katsuma S., Hatase N., Yano T., Ruike Y., Kimura M., Hirasawa A., Tsujimoto G.: Free fatty acids inhibit serum deprivation-induced apoptosis through GPR120 in a murine enteroendocrine cell line STC-1. J. Biol. Chem. 2005, 280, 19507-19515.
  • 32.Kotarsky K., Nilsson N. E., Flodgren E., Owman C., Olde B.: A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem. Biophys. Res. Res. Commun. 2003, 301, 406-410.
  • 33.Le poul E., Loison C., Struyf S., Springael J.-Y., Lannoy V., Decobecq M.-E., Brezillon S., Dupriez V., Vassart G., Van Damme J., Parmentier M., Detheux M.: Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 2003, 278, 25481-25489.
  • 34.Ma D., Tao B., Warashina S., Kotani S., Lu L., Kaplamadzhiev D. B., Mori Y., Tonchev A. B., Yamashima T.: Expression of the free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci. Res. 2007, 58, 394-401.
  • 35.Maslowski K. M., Vieira A. T., Ng A., Kranich J., Sierro F., Yu D., Schilter H. C., Rolph M. S., Mackay F., Artis D., Xavier R. J., Teixeira M. M., Mackay C. R.: Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Natrue 2009, 461, 1282-1287.
  • 36.Mitsui R., Karaki S.-I., Kubo Y., Sigiura Y., Kuwahara A.: Fibre-free diet leads to impairment of neuronally mediated muscle contractile response in rat distal colon. Neurogastroenterol. Motil. 2006, 18, 1093-1101.
  • 37.Mitsui R., Ono S., Karaki S.-I., Kuwahara A.: Neural and non-neural mediation of propionate-induced contractile responses in the rat distal colon. Neurogastroenterol. Motil. 2005, 17, 585-594.
  • 38.Mitsui R., Ono S., Karaki S.-I., Kuwahara A.: Propionate modulates spontaneous contractions via enteric nerves and prostglandin in the rat distal colon. Jpn. J. Physiol. 2005, 55, 331-338.
  • 39.Miyauchi S., Hirasawa A., Iga T., Liu N., Itsubo C., Sadakane K., Hara T., Tsujimoto G.: Distribution and regulation of protein expression of the free fatty acid receptor GPR120. Naunyn Schmmiedebergs Arch Pharmacol. 2009, 379, 427-433.
  • 40.Nilsson N. E., Kotarsky K., Owman C., Olde B.: Identification of a free fatty acid receptor, FFRA2, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 2003, 303, 1047-1052.
  • 41.Ono S., Karaki S.-I., Kuwahara A.: Short-chain fatty acids decrease in the frequency of spontaneous contractions of longitudinal muscle via enteric nerves in rat distal colon. Jpn. J. Physiol. 2004, 54, 483-493.
  • 42.Ono S., Mitsu R., Karaki S.-I., Kuwahara A.: Muscarinic and 5-HT4 receptors participate in the regulation of the frequency of spontaneous contractions of the longitudinal muscle in rat distal colon. Bomedical Res. 2005, 26, 173-177.
  • 43.Peters S. G., Pomare E. W., Fisher C. A.: Portal and peripheral blood short chain fatty acid concentrations after caecal lactulose instillation at surgery. Gut 1992, 33 (9), 1249-1252.
  • 44.Powel A. K., Bywater R. A. R.: Murine intestinal migrating motor complexes: longitudinal components. Neurogastroenterol.&Mitil. 2003, 15, 245-256.
  • 45.Rinder G., Bartoov-Shifman R., Zalogan T., Avnit-Sagi T., Bahar K., Sharivkin R., Kantorovich L., Weiss S., Walker M. D.: Regulation of GPR40 locus: towards a molecular understanding. Biochem. Soc. Trans. 2008, 36, 360-362.
  • 46.Sawzdarogo M., George S. R., Nguyen T., Xu S., Kolakowski Jr. L. F., O'Dowd B. F.: A cluster of four novel human G proteing-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1 Biochem. Biophys. Res. Commun. 1997, 239, 543-547.
  • 47.Senga T., Iwamoto S., Yoshida T., Yokota T., Adachi K., Azuma E., Hamaguchi M., Iwamoto T.: LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3. Blood 2003, 101, 1185-1187.
  • 48.Shapiro H., Shachar S., Sekler I., Hershfinkel M., Walker M. D.: Role of GPR40 in fatty acid action on the b-cell line INF-1E. Biochem. Biophys. Res. Commun. 2005, 335, 97-104.
  • 49.Sidhu S. S., Thompson D. G., Warhurst G., Case R. M., Benson R. S.: Fatty acid-induced cholecystokinin secretion and changes in intracellular Ca²⁺ in two enteroendocrine cell lines, STC-1 and GLUTag. J. Physiol. 2000, 528, 165-176.
  • 50.Spector A. A., Hoak J. C.: Letter: Fatty acids, platelets, and microcirculatory obstruction. Science 1975, 190, (4213), 490-492.
  • 51.Stein D. T., Esser V., Stevenson B. E., Lane K. E., Whiteside J. H., Daniels M. B., Chen S., McGarry J. D.: Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J. Clin. Invest. 1996, 97, 2728-2735.
  • 52.Stenberg P., Rubins N., Bartoov-Shifman R., Walker M. D., Edlund H.: The FFA receptor GPR40 links hyperinsulinemia, hepatic stetosis, and impaired glucose homeostasis in mouse. Cell Metab. 2005, 1, 245-258.
  • 53.Stoddart L. A., Smith N. J., Milligan G.: International union of pharmacology. LXXI. Free fatty acid receptors, FFA1,-2, and -3: pharmacology and pathophysiological functions. Pharmacol. Rev. 2008, 60, 405-417.
  • 54.Tanaka T., Katsuma S., Adachi T., Koshimuzu T.-A., Hirasawa A., Tsujimoto G.: Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmmiedebergs Arch. Pharmacol. 2008, 377, 523-527.
  • 55.Tazoe H., Otomo Y., Karaki S.-I., Kato I., Fukami Y., Terasaki M., Kuwahara A.: Expression of short-chain fatty acid recptor GPR41 in the human colon. Biomedical Res. 2009, 30, 149-156.
  • 56.Tomita T., Masuzaki H., Noguchi M., Iwakura H., Fujikura J., Tanaka T., Ebihara K., Kawamura J., Komoto I., Kawaguchi Y. et al.: GPR40 gene expression in human pancreas and insulinoma. Biochem. Biophys. Res. Commun. 2005, 338, 1788-1790.
  • 57.Topping D. L., Clifton P. M.: Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81 (3), 1031-1064.
  • 58.Venkataraman C., Kuo F.: The G-protein coupled receptor, GPR84 regulates IL-4 production by T lymphocytes in response to CD3 crosslinking. Immunol. Lett. 2005, 101, 144-153.
  • 59.Wang J., Wu X., Simonavicius N., Tian H., Ling L.: Medium-chain fatty acids as ligands fro orphan G protein-coupled receptor GPR84. J. Biol. Chem. 2006, 281, 34457-34464.
  • 60.Weaver G. A., Tangel C. T., Krause J. A. et al.: Acarbose enhances human colonic butyrate production. J. Nutr. 1997, 127 (5), 717-723.
  • 61.Wong J. M., de Souza R., Kendall C. W., Eman A., Jenkins D. J.: Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40 (3), 235-243.
  • 62.Yajima T.: Contractile effect of short-chain fatty acids on the isolated colon of the rat. J. Physiol. 1985, 368, 667-678.
  • 63.Yajima T.: Luminal propionate-induced secretory response in the rat distal colon in vitro. J. Physiol. 1988, 403, 559-575.
  • 64.Yonezawa T., Katoh K., Obara Y.: Existence of GPR40 functioning in a human brest cancer cell line, MCF-7. Biochem. Biophys. Res. Commun. 2004, 314, 806-809.
  • 65.Yuli I., Oplatka A.: Cytosolic acidification as an early transductory signal of human neutrophil Chemotaxis. Science 1987, 235, 340-342.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-f0d02bbc-8258-43bf-a56c-012b8dcc9ab6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.