PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 46 | 3 |
Tytuł artykułu

Coordination chemistry of glutathione

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The metal ion coordination abilities of reduced and oxidized glutathione are reviewed. Reduced glutathione (GSH) is a very versatile ligand, forming stable complexes with both hard and soft metal ions. Several general binding modes of GSH are described. Soft metal ions coordinate exclusively or primarily through thiol sulfur. Hard ones prefer the amino acid-like moiety of the glutamic acid residue. Several transition metal ions can additionally coordinate to the peptide nitrogen of the γ-Glu-Cys bond. Oxidized glutathione lacks the thiol function. Nevertheless, it proves to be a surprisingly efficient ligand for a range of metal ions, coordinating them primarily through the donors of the glutamic acid residue.
Wydawca
-
Rocznik
Tom
46
Numer
3
Opis fizyczny
p.567-580,fig.
Twórcy
autor
  • University of Wroclaw, F.Joliot-Curie 14, 50-383 Wroclaw, Poland
autor
Bibliografia
  • 1. Meister, A. & Anderson, M.E. (1983) Gluta­thione. Annu. Rev. Biochem. 52, 711-760.
  • 2. Rabenstein, D.L. (1989) Metal complexes of glutathione and their biological significance; in Glutathione, Chapter V, pp. 147-186, New York.
  • 3. Ballatori, N. (1994) Glutathione mercaptides as transport forms of metals. Adv. Pharm. 27, 271-296.
  • 4. Bartosz, G. (1995,) The second face of oxygen. Warszawa, PWN (in Polish).
  • 5. Bellomo, G., Vairetti, M., Stivala, L., Mira- belli, F., Richelmi, P. & Orrenius, S. (1992) Demonstration of nuclear compartmentali- zation of glutathione in hepatocytes. Proc. Natl Acad. Sci. U.S.A. 89, 4412-4416.
  • 6. Munday, R. (1994) Bioactivation of thiols by one-electron oxidation. Adv. Pharm. 27, 237- 270.
  • 7. Kasprzak, S.K. (1991) The role of oxidative damage in metal carcinogenicity. Chem. Res. Toxicol 4, 604-616.
  • 8. Jacob, C., Maret, W. & Vallee, B.L. (1999) Se­lenium redox biochemistry of zinc-sulfur coor­dination sites in proteins and enzymes. Proc. Natl Acad. Sci. U.S.A. 96, 1910-1914.
  • 9. Maret, W. (1994) Oxidative metal release from metallothionein via zinc-thiol/disulfide inter­change. Proc. Nad. Acad. Sci U.S.A. 91, 237-241.
  • 10. Savas, M.M., Shaw III, C.F. & Petering, D.H. (1993) The oxidation of rabbit liver metallo- thionein-II by 5,5'-dithiobis(2-nitrobenzoic acid) and glutathione disulfide. J. Inorg. Biochem. 52, 235-249.
  • 11. Maret, W., Jacob, C., Vallee, B.L. & Fischer, E.H. (1999) Inhibitory sites in enzymes: Zinc removal and reactivation by thionein. Proc. Natl Acad. Sci. U.S.A. 96, 1936-1940.
  • 12. Maret, W. & Vallee, B.L. (1998) Thiolate lig- ands in metallothionein confer redox activity on zinc clusters. Proc. Natl. Acad. Sci. U.S.A. 95, 3478-3482.
  • 13. Jiang, L.J., Maret. W. & Vallee, B.L. (1998) The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 95, 3483-3488.
  • 14. Jacob, C.f Maret, W. & Vallee, B.L. (1998) Con­trol of zinc transfer between thionein, metallothionein, and zinc proteins. Proc. Natl Acad. Sci. U.S.A. 95, 3489-3494.
  • 15. Rabenstein, D.L. (1973) Nuclear magnetic res­onance studies of the acid-base chemistry of amino acids and peptides. I. Microscopic ion­ization constants of glutathione and methyl- mercury-complexed glutathione. J. Am. Chem Soc. 95, 2797-2803.
  • 16. Fujiwara, S., Formicka-Kozłowska, G. & Koz­łowski, H. (1977) Conformational study of glutathione by NMR. Bull. Chem. Soc. Jap. 50, 3131-3135.
  • 17. Varnagy, K. & Sovago, I. (1988) Transition metal complexes of amino acids and deriva­tives containing disulphide bridges. Inorg. Chim. Acta 151, 117-123.
  • 18. Touche, M.L.D. & Williams, D.R. (1976) Ther­modynamic considerations in co-ordination. Part XXV. Formation of ternary complexes containing two dissimilar metal ions and the implication for metal-metal stimulation phe­nomena in vivo. J. Chem. Soc. Dalton Trans. 1355-1359.
  • 19. Corrie, A.M., Walker, M.D. & Williams, D.R. (1976) Thermodynamic considerations in co­ordination. Part XXII. Sequestering ligands for improving the treatment of plumbism and cadmiumism. J. Chem. Soc. Dalton Trans. 1012-1015.
  • 20. Fuhr, J., Rabenstein. D.L. (1973) Nuclear mag­netic resonance studies of the solution chemis­try of metal complexes. IX. The binding of cad­mium, zinc, lead, and mercury by glutathione. J. Am. Chem. Soc. 95, 6944-6950.
  • 21. Hynes, M J. & O'Dowd, M. (1987) Interactions of the trimethyltin (IV) cation with carboxylic acids, amino acids, and related ligands. J. Chem. Soc. Dalton Trans. 563-566.
  • 22. Bugarin, M.G. & Filolla, M. (1999) The forma­tion constants of dimethylthallium (III>gluta- thione complexes in aqueous solution. J. Inorg. Biochem. 73, 17-29.
  • 23. Li, Z.S., Lu, Y.P., Zhen, R.G., Szczypka, M., Thiele, D.J. & Rea, P.A. (1997) A new pathway for vacuolar cadmium sequestration in Sac- charomyces cerevisiae: YCFl-catalyzed trans­port of bis(glutathionato)cadmium. Proc. Natl Acad. Sci. U.S.A. 94, 42-47.
  • 24. Kadima, W. & Rabenstein, D.L. (1990) Nu­clear magnetic resonance studies of the solu­tion chemistry of metal complexes. 26. Mixed ligand complexes of cadmium, nitrilotriacetic acid, glutathione, and related ligands. J. Inorg. Biochem. 38, 277-288.
  • 25. Diaz-Cruz, M.S., Mendieta, J., Monjonell, A., Tauler, R. & Esteban, M. (1998) Study of the zinc-binding properties of glutathione by dif­ferential pulse polarography and multivariate curve resolution. J. Inorg. Biochem. 70, 91.
  • 26. Dominey, L.A. & Kustin, K. (1983) Kinetics and mechanism of Zn(II) complexation with reduced glutathione. J. Inorg. Biochem. 18, 153-160.
  • 27. Krężel, A. & Bal, W., reference in the text.
  • 28. Gockel, P., Gelinsky, M., Vogler, R. & Vahren- kamp, H. (1998) Solution behaviour and zinc complexation of tripeptides with cysteine and/or histidine at both termini. Inorg. Chim. Acta 272, 115-124.
  • 29. Krężel, A. & Bal, W. (1999) reference omitted.
  • 30.Odenheimer, B. & Wolf, W. (1982) Reactions of cisplatin with sulfur-containing amino acids and peptides I. Cysteine and glutathione. Inorg. Chim. Acta 66, L41-L43.
  • 31. Appleton, T.G., Connor, J.W., Hall, J.R. & Prenzler, P.D. (1989) NMR study of the reac­tions of cw-diamminediaquaplatinum(II) cat­ion with glutathione and amino acids contain­ing a thiol group. Inorg. Chem. 28,2030-2037.
  • 32. Lempers, E.L.M. & Reedijk, J. (1990) Revere ibility of binding of cisplatin-methionine by diethyldithiocarbamate or thiourea: A study with model adducts. Inorg. Chem. 29, 217-222.
  • 33. Berners-Price, S.J. & Kuchel, P.W. (1990) Re­action of cis- and ira/ia-iPtC^iNH^l with re­duced glutathione studied by 13C, 195Pt and 15N-{1H} DEPT NMR. J. Inorg. Biochem. 38, 305-326.
  • 34. Berners-Price, SJ. & Kuchel, P.W. (1990) Re­action of cis- and irans-fPtC^CNH^} with re­duced glutathione inside human red blood cells, studies by lH and ^-^H} DEPT NMR. J. Inorg. Biochem. 38, 327-345.
  • 35. Corden, B. (1987) Reaction of platinum(II) antitumor agents with sulfhydryl compounds and the implications for nephrotoxicity. Inorg. Chim. Acta 137, 125-130.
  • 36.Sovago, I. & Martin, R.B. (1981) Transition metal ion induced deprotonation of amide hydrogenes in sulfhydryl containing com­pounds. J. Inorg. NucL Chem. 43, 425-429.
  • 37. Chow, S.T., McAuliffe, C.A. & Sayle, B.J. (1975) Metal complexes of amino acids and de- rivatives-lX. Reactions of the tripeptide, glutathione, with divalent cobalt, nickel, cop­per and palladium salts. J. Inorg. NucL Chem. 37, 451-454.
  • 38. Kozłowski, H., Decock-Le Reverend, B., Ficheux, D., Loucheux, C. & Sovago, I. (1987) Nickel(II) complexes with sulfhydryl contain­ing peptides. Potentiometric and spectro­scopic studies. J. Inorg. Biochem. 29, 187-197.
  • 39. Letter, J.E., Jr. & Jordan, R.B. (1975) Com- plexing of Nickel(II) by cysteine, tyrosine and related ligands and evidence for zwitterion re­activity. J. Am. Chem. Soc. 97, 2381-2390.
  • 40. Formicka-Kozłowska, G., May, P.M. & Wil­liams, D.R. (1980) Potentiometric studies on nickel(II>glutathionate interactions. Inorg. Chim. Acta 46, L51-L53.
  • 41. Jeżowska-Trzebiatowska, B., Jaruga-Baranow- ska, M., Ostern, M. & Kozłowski, H. (1981) Polarographic studies on Ni(II)-glutathione system in aqueous solutions. Polish J. Chem. 55, 2477-2483.
  • 42. Jeżow8ka-Trzebiatow8ka, B., Formicka-Koz­łowska, G. & Kozłowski, H. (1976) Metal- glutathione interaction in water solution. NMR and electron spectroscopy study of Ni(II>glutathione complexes in aqueous solu­tion. Chem. Phys. Lett. 42, 242-245.
  • 43.Ostern, M.I. & Jaruga-Baranowska, M. (1983) Complex structure and catalytic hydrogen ion reduction in Ni(II)-glutathione system. Electro- chim. Acta 28, 1173-1175.
  • 44. Krężel, A. & Bal, W. (1999) reference omitted.
  • 45. Li, W., Zhao, Y. & Chou, I.N. (19%) Mg2* anta- gonism on Ni -induced changes in micro­tubule assembly and cellular thiol homeosta­sis. Toxicol Appl Pharmacol. 136, 101-111.
  • 46. Shi, X., Dalai, N.S. & Kasprzak, K.S. (1993) Generation of free radicals in reactions of Ni(II>thiol complexes with molecular oxygen and model lipid hydroperoxides. J. Inorg. Biochem. 50, 211-225.
  • 47. Shi, X., Mao. Y., Ahmed, N. & Jiang, H. (1995) HPLC investigation on Ni(II>mediated DNA damage in the presence of i-butyl hydro­peroxide and glutathione. J. Inorg. Biochem. 57, 91-102.
  • 48. Ross, S.A. & Burrows, C.J. (1998) Nickel com­plexes of cysteine- and cystine-containing pep­tides: Spontaneous formation of disulfide- bridged dimers at neutral pH. Inorg. Chem. 37, 5358-5363.
  • 49. Jeżowska-Trzebiatowska, B., Formicka-Koz- łowska, G. & Kozłowski, H. (1977) NMR and EPR study of the Cu(II>glutathione interac­tion in water solution. J. Inorg. NucL Chem. 39, 1265-1268.
  • 50. Sivertsen, T. (1980) Copper-induced GSH de­pletion and methaemoglobin formation in vi­tro in erythrocytes of some domestic animals and man. A comparative study. Acta Phar­macol Toxicol. 46, 121-126.
  • 51. Corazza, A., Harvey, I. & Sadler, P.J. (1996) 1H, 13C-NMR and X-ray absorption studies of copper(I) glutathione complexes. Eur. J. Biochem. 236, 697-705.
  • 52. Harman, B. & Sovago, I. (1983) Metal com­plexes of sulphur-containing ligands. V. Inter­actions of cobalt(II) ion with L-cysteine and its derivatives. Inorg. Chim. Acta 80, 75-83.
  • 53. Hamed, M.Y. & Silver, J. (1983) Studies on the reactions of ferric iron with glutathione and some related thiols. Part II. Complexes forma­tion in the pH range three to seven. Inorg. Chim. Acta 80, 115-122.
  • 54. Hamed, M.Y., Silver, J. & Wilson, M.T. (1983) Studies on the reactions of ferric iron with glutathione and some related thiols. Part III. A study of the iron catalyzed oxidation of glutathione by molecular oxygen. Inorg. Chim. Acta 80, 237-244.
  • 55. Kitagawa, S., Seki, H., Kamentani, F. & Sakurai, H. (1988) EPR study on the interac­tion of hexavalent chromium with glutathione or cysteine: Production of pentavalent chro­mium and its stability. Inorg. Chim. Acta 152, 251-255.
  • 56. Bose, R.N., Moghaddas, S. & Gelerinter, E. (1992) Long-lived chromium(IV) and chro- mium(V) metabolites in the chromium(VI> glutathione reaction: NMR, ESR, HPLC and kinetic characterization. Inorg. Chem. 31, 1987-1994.
  • 57. Zhitkovich, A., Voitkun, V. & Costa, M. (1995) Glutathione and free amino acids form stable complexes with DNA following exposure of in­tact mammalian cells to chromate. Carci­nogenesis 16, 907-913.
  • 58. Cupo, D.Y. & Watterhahn, K.E. (1986) Modifi­cation of chromium(VI>induced DNA damage by glutathione and cytochromes P-450 in chicken embryo hepatocytes. Proc. Natl Acad. ScL U.S.A. 82, 6755-6759.
  • 59. Formicka-Kozłowska, G., Kozłowski, H. & Jeżowska-Trzebiatowska, B. (1979) Metal- glutathione interaction in aqueous solution. Nickel(ID, cobaltGI), and coppeHII) com­plexes with oxidized glutathione. Acta Biochim. Polon. 26, 239-248.
  • 60. Gillard, R.D. & Phipps, D.A. (1997) Optically active co-ordination compounds. Part XXI. The oxygenation of cobalt(II>tripeptide com­plexes. J. Am. Chem. Soc. 119, 1074-1082.
  • 61. Kroneck, P. (1975) Models for the electron paramagnetic resonance nondetectable cop­per in "blue oxidases". A binuclear copper(II) complex with oxidized glutathione. J. Am Chem. Soc. 97, 3839-3841.
  • 62. Miyoshi, K., Sugiura, Y., Ishizu, K., Iitaka, Y. & Nakamura, H. (1980) Crystal structure and spectroscopic properties of violet glutathione- copper(II) complex with axial sulfur coordina­tion and two copper sites via a disulfide bridge. J. Am. Chem. Soc. 102, 6130-6136.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-effe3c0a-26fd-4291-b645-e046b9142f5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.