PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 52 | 1 |

Tytuł artykułu

Functional relationships between the Saccharomyces cerevisiae cis-prenyltransferases required for dolichol biosynthesis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the yeast Saccharomyces cerevisiae the RER2 and SRT1 genes encode Rer2 and Srt1 proteins with cis-prenyltransferase (cis-PT-ase) activity. Both cis-PT-ases utilize farnesyl diphosphate (FPP) as a starter for polyprenyl diphosphate (dolichol backbone) formation. The products of the Rer2 and Srt1 proteins consist of 14–17 and 18-23 isoprene units, respectively. In this work we demonstrate that deletion or overexpression of SRT1 up-regulates the activity of Rer2p and dolichol content. However, upon overexpression of SRT1, preferential synthesis of longer-chain dolichols and a decrease in the amount of the shorter species are observed. Furthermore, overexpression of the ERG20 gene (encoding farnesyl diphosphate synthase, Erg20p) induces transcription of SRT1 mRNA and increases the levels of mRNA for RER2 and DPM1 (dolichyl phosphate mannose synthase, Dpm1p). Subsequently the enzymatic activity of Rer2p and dolichol content are also increased. However, the amount of Dpm1p or its enzymatic activity remain unchanged.

Wydawca

-

Rocznik

Tom

52

Numer

1

Opis fizyczny

p.221-232,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, A.Pawinskiego 5A, 02-106 Warsaw, Poland
autor
autor
autor
autor

Bibliografia

  • Adair WL, Cafmeyer N. (1987) Characterization of the Saccharomyces cerevisiae cis-prenyltransferase required for dolichyl phosphate biosynthesis. Arch Biochem Biophys.; 259: 589–96.
  • Belgareh-Touze N, Corral-Debrinski M, Launhardt H, Galan JM, Munder T, Le Panse S, Haguenauer-Tsapis R. (2003) Yeast functional analysis: identification of two essential genes involved in ER to Golgi trafficking. Traffic.; 4: 607–17.
  • Blanchard L, Karst F. (1993) Characterization of a lysine-to-glutamic acid mutation in a conservative sequence of farnesyl diphosphate synthase from Saccharomyces cerevisiae. Gene.; 125: 185–89.
  • Brown MS, Goldstein JL. (1997) The SREBP Pathway: regulation of cholesterol metabolism by proteolysis of membrane bound transcription factor. Cell.; 89: 331–40.
  • Burda P, Aebi M. (1999) The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta.; 1426: 239–57.
  • Chambon C, Ladeveze V, Oulmouden A, Servouze M, Karst F. (1990) Isolation and properties of yeast mutants affected in farnesyl diphosphate synthetase. Curr Genet.; 18: 41–6.
  • Cordier H, Karst F, Berges T. (1999) Heterologous expression in Saccharomyces cerevisiae of an Arabidopsis thaliana cDNA encoding mevalonate diphosphate decarboxylase. Plant Mol Biol.; 39: 953–67.
  • Ericsson J, Jackson SM, Edwards PA. (1996a) Synergistic binding of sterol regulatory element- binding protein and NF-Y to the farnesyl diphosphate synthase promoter is critical for sterol-regulated expression of the gene. J Biol Chem.; 271: 24359–64.
  • Ericsson J, Jackson SM, Lee BC, Edwards PA. (1996b) Sterol regulatory element binding protein binds to a cis element in the promoter of the farnesyl diphosphate synthase gene. Proc Natl Acad Sci USA.; 93: 945–50.
  • Gardner RG, Hampton RY. (1999) A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes. J Biol Chem.; 274: 31671–8.
  • Goldstein JL, Brown MS. (1990) Regulation of mevalonate pathway. Nature.; 343: 425–30.
  • Grabińska K, Palamarczyk G. (2002) Dolichol biosynthesis in the yeast Saccharomyces cerevisiae: an insight into regulatory role of farnesyl diphosphate synthase. FEMS Yeast Res.; 2: 259–65.
  • Hampton RY, Gardner RG, Rine J. (1996) Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl- CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell.; 7: 2029–44.
  • Hang JS, Goldner CM, Yazolvitskaya EM, Voziyan PA, Melnykovych G. (1994) Direct cell killing (apoptosis) in human lymphoblastoid cells incubated in the presence of farnesol; effect of phosphatidylcholine. Biochim Biophys Acta.; 1223:133–40.
  • Hinson DD, Chambliss KL, Toth MJ, Tanaka RD, Gibson KM. (1997) Post-translational regulation of mevalonate kinase by intermediate of the cholesterol and nonsterol isoprene biosynthetic pathway. J Lipid Res.; 38: 2216–23.
  • Jung P, Tanner W. (1973) Identification of the lipid intermediate in yeast mannan biosynthesis. Eur J Biochem.; 37: 1–6.
  • Lehle L, Tanner W. (1974) Membrane bound mannosyl transferase in yeast glycoprotein biosynthesis. Biochim Biophys Acta.; 350: 225–35.
  • Machida K, Tanaka T, Fujita K-I, Taniguchi M. (1998) Farnesol-induced generation of reactive oxygen species via indirect inhibition of the mitochondrial transport. J Bacteriol.; 180: 4460–5.
  • Melnykovych G, Haug JS, Goldner CM. (1992) Growth inhibition of leukemia cell line CEM-C1 by farnesol: effects of phosphatidylcholine and diacylglycerol. Biochem Biophys Res Commun.; 186: 543–48,
  • Palamarczyk G, Lehle L, Mankowski T, Chojnacki T, Tanner W. (1980) Specificity of solubilized yeast glycosyl transferases for polyprenyl derivatives. Eur J Biochem.; 105: 517–23.
  • Palamarczyk G, Drake R, Haley B, Lennarz WJ. (1990) Evidence suggesting that the synthesis of glucosyl phosphoryl dolichol in yeast microsomal membranes involves a 35 kDa protein. Proc Natl Acad Sci USA.; 87: 2666–70.
  • Palmgreen MG, Sommarin M, Serrano R, Larsson C. (1991) Identification of an autoinhibitory domain in the C-terminal region of the plasma membrane H(+) ATPase. J Biol Chem.; 266: 20470–75.
  • Sagami HAY, Igarashi S, Tateyama K, Ogura K, Roos J, Lennarz WJ. (1996) Enzymatic formation of dehydrodolichal and dolichal, new products related to yeast dolichol biosynthesis. J Biol Chem.; 271: 9560–6.
  • Sato M, Sato K, Nishikawa Si, Hirata A, Kato Ji, Nakano A. (1999) The yeast RER2 gene identified by endoplasmic reticulum protein localization mutations encodes cis-prenyltransferase, a key enzyme in dolichol biosynthesis. Mol Cell Biol.; 19: 471–83.
  • Sato M, Fujisaki S, Sato K, Nishimura Y, Nakano A. (2001) Yeast Saccharomyces cerevisiae has two cis-prenyltransferases with different properties and localizations. Implications for their distinct physiological roles in dolichol synthesis. Genes Cells.; 6: 495–506.
  • Schenk B, Rush JS, Waechter CJ, Aebi M. (2001) An alternative cis-isoprenyltransferase activity in the yeast that produces polyprenols with chain length simmilar to mammalian dolichols. Glycobiology.; 11: 89–98.
  • Sharma CB, Lehle L, Tanner W. (1981) N-glycosylation of yeast proteins; characterization of the solubilized oligosaccharyltransferase. Eur J Biochem.; 116: 101–8.
  • Song L, Poulter CD. (1994) Yeast farnesyl-diphosphate synthase: site directed mutagenesis of residues in highly conserved prenyltransferase domains I and II. Proc Natl Acad Sci USA.; 91: 3044–8.
  • Szkopińska A, Nowak L, Świeżewska E, Palamarczyk G. (1988) CTP-dependent lipid kinases of yeast Saccharomyces cerevisiae. Arch Biochem Biophys.; 266: 124–31.
  • Szkopińska A, Grabińska K, Delourme D, Karst F, Rytka J, Palamarczyk G. (1997) Polyprenol formation in the yeast Saccharomyces cerevisiae; effect of farnesyl diphosphate synthase overexpression. J Lipid Res.; 38: 962–8.
  • Szkopińska A, Świeżewska E, Rytka J. (2002) Induction of the synthesis of an additional family of long-chain dolichols in the yeast Saccharomyces cerevisiae. Effect of starvation and aging. Acta Biochim Polon.; 49: 781–7.
  • Tateyama S, Sagami H. (2001) Study on the biosynthesis of dolichol in yeast: recognition of the prenyl chain length in polyprenol reduction. J Biochem.; 129: 297–302.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-efaf9e4f-ace1-40d7-a47f-6a342b17d98f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.