PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

1997 | 39 | 1-2 |

Tytuł artykułu

Xylanolytic activity of some species of River Nile aquatic Hyphomycetes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The strongest xylanolytic ability of 16 investigated species was found in Flagellospora penicillioides Ingold, Triscelophorus monosporus Ingold, Anguillospora longissima (De Wild) Ingold, and Lunulospora curvula Ingold. Xylan was the best carbon source for xylanase production and activity in F. penicillioides and T. monosporus. The peak values of xylanase production and activity recorded ranged from 20-25 °C and 5-6 pH. K2HPO4 was the best phosphorus source for xylanase activity. The xylanase activity disappeared when only NaNO3 was used as the nitrogen source. Xylan is an important source of carbon for species of aquatic Hyphomycetes but xylanolytic ability was different between the species.
PL
Wśród 16 gatunków największą zdolność rozkładu ksylanu stwierdzono u Flagellospora penicillioides Ingold, Triscelophorus monosporus Ingold, Anguillospora longissima (De Wild) Ingold i Lunulospora curvula Ingold. Dla F. penicillioides i T. monosporus ksylan okazał się najlepszym źródłem węgla do produkcji ksylanazy, i przy jego dostępności aktywność ksylanazy była największa. Maksymalna produkcja i aktywność enzymu wystąpiła przy 20-25 °C i pH 5-6. Najlepszym źródłem fosforu był K2HPO4. Aktywność ksylanazy zanikała w obecności NaNO3 jako źródła azotu. Ksylan jest ważnym źródłem węgla dla wodnych Hyphomycetes, ale poszczególne gatunki różnią się stopniem zdolności jego rozkładu.

Wydawca

-

Czasopismo

Rocznik

Tom

39

Numer

1-2

Opis fizyczny

p.1-8,fig.,ref.

Twórcy

  • South Valley University, Sohag, Egypt
autor

Bibliografia

  • Bärlocher F. and Kendrick B. 1974. Dynamics of the fungal population on leaves in stream. J. Ecol., 63, 761-691.
  • Bärlocher F. 1992. The ecology of aquatic Hyphomycetes. In: Billings W.D. and Golley F. (eds) Community organization. London, Springer-Verlag, 94, 38-69.
  • Chamier A.C. 1980. Pectinases in leaf degradation by aquatic Hyphomycetes. PhD thesis, University of London.
  • Chamier A.C. 1985. Cell wall degrading enzymes of aquatic Hyphomycetes: a review. Bot. J. Linn. Soc., 91, 67-81.
  • Chamier A.C. and Dixon P.A. 1982. Pectinases in leaf degradation by aquatic Hyphomycetes. 1. The field study: the colonization-pattern of aquatic Hyphomycetes on leaf packs in a Surrey stream. Oecologia, 52, 109-115.
  • Chamier A.C., Dixon P.A. and Archer S.A. 1984. The spatial distribution of fungi on decomposing alder leaves in a freshwater stream. Oecologia, 64, 92-103.
  • Danninger E., Messner K. and Rohr M. 1979. Untersuchungen über den Biologischen Abbau organischer Naturstoffe durch aquatische Hyphomyzeten. Zentralbl. Bakteriol. Hyg., 1 Abt. orig., B, 109, 282-286.
  • El-Hissy F.T., Khallil A.M. and Abdel-Raheem A.M. 1993a. Monthly variations of Oomycetes (zoosporic fungi) and aquatic Hyphomycetes at Sohag (Upper Egypt). Acta Soc. Bot. Pol., 72, 22-28.
  • El-Hissy F.T., Khallil A.M. and Abdel-Raheem A.M. 1993b. Effect of some heavy metals on the mycelial growth of Achlya racemosa and Alatospora acuminata. Microbial. Research, 148, 535-542.
  • El-Wood J.W., Newbold J.D., Trimble A.F. and Stark R.W. 1981. The limiting role of phosphorus in a wood and stream ecosystem: effects of P enrichment on leaf decomposition and primary producers. Ecology, 62, 146-158.
  • Fisher P.J., Davey R.A. and Webster J. 1983. Degradation of lignin by aquatic and aeroaquatic Hyphomycetes. Trans. Br. Mycol. Soc., 80, 166-168.
  • Howarth R.W. and Fisher S.G. 1976. Carbon, nitrogen and phosphorus dynamics during leaf decay in nutrient enriched stream micro-ecosystems. Freshwater Biology, 6, 221-228.
  • Ingold C.T. 1975. An illustrated guide to waterborne Hyphomycetes (Fungi Imperfecti) with notes on their biology. Freshwater Biol. Assoc. Publ., 30, 1-97.
  • Johnson L., Curl E., Bond J. and Fribourg H. 1959. Methods for studying soil microflora. Plant disease relationships. Minneapolis, Burgess Publ. Comp., 1-68.
  • Jones E.B.G. 1981. Observations on the ecology of lignicolous aquatic Hyphomycetes. In: Wicklow D.T. and Carrol G.C. (eds) The fungal community. New York, Marcel Dekker, 731-742.
  • Kaushik N.K. and Hynes H.B.N. 1971. The fate of the dead leaves that fall into streams. Arch. Hydrobiol., 68, 1465-1515.
  • Koske R.E. and Duncan I.W. 1974. Temperature effects on growth, sporulation and germination of some aquatic Hyphomycetes. Can. J. Bot., 52, 1387-1391.
  • Meyer J.L. 1980. Dynamics of phosphorus and organic matter during leaf decomposition in a freshwater stream. Oikos, 34, 44-53.
  • Meyer J.L. and Johnson C. 1983. The influence of elevated nitrate concentration on rate of leaf decomposition in a stream. Freshwater Biology, 31, 177-183.
  • Naguib M.I. 1964. Effect of sevine on the carbohydrate and nitrogen metabolism during the germination of cotton seeds. Ind. J. Expt. Biol., 2, 149-152.
  • Nelson N. 1944. A photometric adaptation of Somogyi method for the determination of glucose. J. Biol. Chem., 153, 375-380.
  • Ranzoni F.V. 1951. Nutrient requirements for two species of aquatic Hyphomycetes. Mycologia, 43, 130-141.
  • Rosset J. and Bärlocher F. 1985. Transplant experiments with aquatic Hyphomycetes. Verh. Int. Ver. Limnol., 22, 2789-2790.
  • Shearer C.A. 1989a. Aniptodera (Halosphaeriaceae) from wood in freshwater habitats. Mycologia, 81, 139-146.
  • Shearer C.A. 1989b. Pseudohalonectria (Lasiosphaeriaceae), an antagonistic genus from wood in freshwater. Can. J. Bot, 81, 134-146.
  • Shearer C.A. and Webster J. 1991. Aquatic Hyphomycetes in the River Teign. 4. Twig colonization. Mycol. Res., 25, 413-420.
  • Somkuti G.A. 1974. Synthesis of cellulase of Mucor pusillus and Mucor miehei. J. Gen. Microbiol., 81, 100-106.
  • Suberkropp K. 1991. Relationships between growth and sporulation of aquatic Hyphomycetes on decomposing leaf litter. Mycol. Res., 95, 843-850.
  • Suberkropp K. and Klug M.J. 1980. The maceration of deciduous leaf litter by aquatic Hyphomycetes. Can. J. Bot., 58, 1025-1031.
  • Suberkropp K. and Klug M.J. 1981. Degradation of leaf litter by aquatic Hyphomycetes. In: Wicklow D.T. and Carroll G.C. (eds) The fungal community. New York, Marcel Dekker, 761-776.
  • Suberkropp R., Arsuffi T.L. and Anderson J.P. 1983. Comparison of degradative ability enzymatic activity and palatability of aquatic Hyphomycetes growth on leaf litter. Appl. Environ. Microbiol., 46, 237-244.
  • Thompson P.L. and Bärlocher F. 1989. Effect of pH on leaf breakdown in streams and in the laboratory. J. North Am. Benthol. Soc., 8, 203-210.
  • Thornton D.R. 1963. The physiology and nutrition of some aquatic Hyphomycetes. J. Gen. Microbiol., 33, 23-31.
  • Triska F.J., Sedell J.R. and Buckley B. 1975. The processing of conifer and hardwood leaves in two coniferous forest streams. 2. Biochemical and nutrient changes. Verh. Int. Ver. Limnol., 19, 1628-1639.
  • Willoughby G.L. and Archer J.F. 1973. The fungal spores of a freshwater stream and its colonization on wood. Freshwater Biology, 3, 219-239.
  • Zemek J., Marvanová K.L., Kuniak L. and Kadleckova B. 1985. Hydrolytic enzymes in aquatic Hyphomycetes. Folia Microbiol. (Prague), 30, 363-372.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ef9feef6-884c-4954-aaee-b1611a610cdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.