PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 13 | 5 |

Tytuł artykułu

Molecular and cellular mechanisms of chemically induced hepatocarcinogenesis

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Liver is the main organ of xenobiotic biotransformation. Since biotransformation may generate highly mutagenic active metabolites and reactive oxygen species, liver cells are both the producers and targets for these compounds. Xenobiotics can lead to liver tumour formation via genotoxic or non-genotoxic mechanisms. Non-genotoxic chemicals are often inducers of monooxygenase reactions depending on cytochrome P450 isoforms, active metabolites of which are potencial carcinogens. Moreover, non-genotoxic xenobiotics influence expression of genes responsible for cell proliferation and apoptosis. Increased proliferation may lead to an increased number of cells mutated as a result of genotoxic effects. In animal models of hepatocarcinogenesis at least three steps of tumour development are characterized: initiation, promotion and progression, but it is still unclear what the cellular origin of the liver cancer is. It is likely that either cancer cells originate from differentiated adult hepatocytes or from undifferentiated liver stem cells. Better knowledge about cell changes in neoplastic transformation during hepatocarcinogenesis and gaining control over this process may lead to determination of therapy alternative to cytostatic treatment.

Wydawca

-

Rocznik

Tom

13

Numer

5

Opis fizyczny

p.477-486,fig.,ref.

Twórcy

autor
  • Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland

Bibliografia

  • 1. RUSTGI V. Epidemiology of hepatocellular carcinoma. Gastroenterol. Clin. North Am. 16, 545, 1997.
  • 2. MUELLER E., LOIDA P., SLIGAR S. Twenty-five years of P450cam research: mechanistic insights into oxygenase catalysis. In: Cytochrome P450: Structure, Mechanisms and Biochemistry; Ortiz de Montellano P. ed. Plenum Press, New York, pp 83-124, 1995.
  • 3. WHITLOCK J., DENISON M. Induction of cytochrome P450 enzymes that metabolize xenobiotics. In: Cytochrome P450: Structure, Mechanisms and Biochemistry; Ortiz de Montellano P. ed. Plenum Press, New York, pp 367-390, 1995.
  • 4. GUENGERICH F. Human cytochrome P450 enzymes. In: Cytochrome P450: Structure, Mechanisms and Biochemis­try. Ortiz de Montellano P. ed. pp. 473-575, Plenum Press, New York. 1995.
  • 5. DOGRA S., WHITELAW M., MAY B. Transcriptional activation of cytochrome P450 genes by different classes of chemical inducers. Clin. Exp. Pharmacol. Physiol. 25, 1, 1998.
  • 6. WHITLOCK J. Induction of cytochrome P4501A1. Annu. Rev. Pharmacol. Toxicol. 39, 103, 1999.
  • 7. STEALS B., DALLONGEVILLE J., AUWERX J. et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98, 2088, 1998.
  • 8. MEYER U., HOFFMAN K. Phenobarbital-mediated chang­es in gene expression in the liver. Drug Metab. Rev. 31, 365, 1999.
  • 9. WAXMAN D. P450 gene regulation by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch. Biochem. Biophys. 369, 11, 1999.
  • 10. OLIVER J., ROBERTS R. Receptor-mediated hepatocar- cinogenesis: role of hepatocyte proliferation and apoptosis. Pharmacol. Toxicol. 91, 1, 2002.
  • 11. CZEKAJ P. Thyroid hormone receptors and vitamin A and D derivatives receptors: interactions with DNA. Post. Biol. Kom. 23, 261, 1996 (in Polish).
  • 12. KLIEWER S., LEHMANN J., WILLSON T. Orphan nucle­ar receptors: shifting endocrinology into reverse. 284, 757, 1999.
  • 13. CZEKAJ P. Phenobarbital-induced expression of cyto­chrome P450 genes. Acta Biochim. Polon. 47, 1093, 2000.
  • 14. KAPLANSKI C., PAULEY C., GRIFFITHS T., et al. Dif­ferentiation of rat oval cells after bactivation of peroxisome proliferator-activated receptor a43. Cancer Res. 60, 580,2000.
  • 15. HASMALL SC, ROBERTS RA. The perturbation of apoptosis and mitosis by drugs and xenobiotics. Pharmacol. Ther. 82, 63, 1999.
  • 16. JOHNSON D., WALKER C. Cyclins and cell cycle check­points. Ann. Rev. Pharmacol. Toxicol. 39, 295, 1999.
  • 17. SHERR C., ROBERTS J. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501, 1999.
  • 18. ISRAELS E., ISRAELS L. The cell cycle. Stem Cells 19, 88, 2001.
  • 19. DOMINGUEZ-MALAGON H., GAYTAN-GRAHAM S. Hepatocellular Carcinoma: an update. Ultrastruct. Pathol. 25, 497, 2001.
  • 20. ELFERINK C., GE N-L.,LEVINE A. Maximal aryl hydro­carbon receptor activity depends on an interaction with the retinoblastoma protein. Mol. Pharmacol. 59, 664, 2001.
  • 21. SANTINI R., MYRAND S., ELFERINK C., REINERS J. Regulation of Cyp1a1 induction by dioxin as a function of cell cycle phase. J. Pharmacol. Exp. Ther. 299, 718, 2001.
  • 22. KOLLURI S., WEISS C., KOFF A., GÖTTLICHER M. p27Kip1 induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Genes Dev. 13, 1742, 1999.
  • 23. PUGA A., BARNES S., DALTON T. et al. Aromatic hydro­carbon receptor interactions with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest. J. Biol. Chem. 275, 2943, 2000.
  • 24. HINES R., LUO Z., CRESTEIL T. et al. Molecular regula­tion of genes encoding xenobiotic-metabolizing enzymes: mechanisms involving endogenous factors. Drug Metab. Dispos. 29, 623, 2001.
  • 25. LEVINE A. p53, the cellular gatekeeper for growth and division. Cell 88, 323, 1997.
  • 26. PRIVES C., HALL P. The p53 pathway. J. Pathol. 187, 112, 1999.
  • 27. LOHRUM M., VOUSDEN K. Regulation and activation of p53 and ist family members. Cell Death Diff. 6, 1162, 1999.
  • 28. LUNDBERG A., WEINBERG R. Control of the cell cycle and apoptosis. Eur. J. Cancer 35, 1886, 1999.
  • 29. JACKSON P., GROOPMAN J. Aflatoxm in liver cancer. Gastroenterology 13, 545, 1999.
  • 30. CHRISTENSEN J., ROMACH E., HEALY L. et al. Altered bcl-2 family expression during non-genotoxic hepatocar- cinogenesis in mice. Carcinogenesis 20, 1583, 1999.
  • 31. SCHWARZ M., BUCHMANN S., STINCHCOMBE A., et al. Ah receptor ligands and tumor promotion: survival of neoplastic cells. Toxicol. Lett. 112, 69, 2000.
  • 32. PEEPER D., UPTON T., LADHA M. et al. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 386, 177, 1997.
  • 33. PARK D., SUH K. Transforming growth factor-p1 protein, proliferation and apoptosis of oval cells in acetyaminofluo- rene-induced rat liver regeneration. J. Korean Med. Sci. 14, 531, 1999.
  • 34. ALISON M., GOLDING M., LALANI EL-N., SARRAF C. Wound healing in the liver with particular reference to stem cells. Phil. Trans. R. Soc. Lond. B, 353, 877, 1998.
  • 35. RUDOLPH L., TRAUTWEIN C., KUBICKA S., et al. Dif­ferential regulation of extracellular matrix synthesis during liver regeneration after partial hepatectomy in rats. Hepatology 30, 1159, 1999.
  • 36. FAUSTO N. Liver regeneration. J. Hepatol. 32 (suppl. 1), 19, 2000.
  • 37. LIBBRECHT L., DESMET V., VAN DAMME B., ROSKA- MS T. Deep intralobular extension of human hepatic „pro­genitor cells" correlates with parenchymal inflammation in chronic viral hepatitis: can „progenitor cells" migrate? J. Pathol. 192, 373, 2000.
  • 38. VESSEY C., De La HALL P. Hepatic stem cells: a review. Pathology 33, 130, 2001.
  • 39. GOLDING M., SARRAF C., LALANI EL-N., ALISON M. Reactive biliary epithelium: the product of a pluripotential stem cell compartment? Hum. Pathol. 27, 872, 1996.
  • 40. CHEN Z., WHITE C., EATON D. Decreased expression of cytochrome P450mRNAs and related steroid hydroxylation activities in hyperplastic nodules in male F344 rats. Toxicol. Appl. Pharmacol. 123, 151, 1993.
  • 41. SELL S. The role of determinedstem-cells in the cellular lineage of hepatocellular carcinoma. 37, 189, 1993.
  • 42. GOURNAY J., AUVIGNE I., PICHARD V., et al. In vivo cell lineage analysis during chemical hepatocarcinogenesis in rats using retroviral-mediated gene transfer: evidence for dedifferentiation of mature hepatocytes. Lab. Invest. 82, 781, 2002.
  • 43. PONDER K. Analysis of liver development, regeneration, and carcinogenesis by marking studies. FASEB J. 10, 673, 1996.
  • 44. TEE L., KIRILAK Y., HUANG W-H., et al. Dual phenotypic expression of hepatocytes and bile ductular markers in developing and preneoplastic rat liver. Carcinognesis 17, 251, 1996.
  • 45. HIXSON D., CHAPMAN L., McBRIDE A., et al. Antigenic phenotypes common to rat oval cells, primary hepatocellular carcinomas and developing bile ducts. Carcinogenesis 18, 1169, 1997.
  • 46. LIBBRECHT L., DESMET V., VAN DAMME B., ROS- KAMS T. The immunohistochemical phenotype of dysplastic foci in human liver: correlation with putative progenitor cells. J. Hepatol. 33, 76, 2000.
  • 47. UENISHI T., HIROHASHI K., SHUTO T., et al. Primary liver cancer with dual expression of hepatocyte and bile duct epithelial markers. Hepato-Gastroenterol. 49, 1092, 2002.
  • 48. LIBBRECHT L., De VOS R.,CASSIMAN D. et al. Hepatic progenitor cells in hepatocellular adenomas. Am. J. Surg. Pathol. 25, 1388, 2001.
  • 49. Terminology of nodular hepatocellular lesions. International Working Party. Hepatology, 22, 983, 1995.
  • 50. STEINBERG P., FRANK H., ODENTHAL M., et al. Role of the Ha-ras gene in the malignant transformation of rat liver oval cells. Int. J. Cancer. 71, 680, 1997.
  • 51. LIN Y., BRUNT E., BOWLING W. et al. ^as-transduced diethynitrosamine-treated hepatocytes develop into cancers of mixed phenotype in vivo. Cancer Res. 55, 5242, 1995.
  • 52. TERADA N., HAMAZAKI T., OKA M. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature advance online publication, 13 March 2002, DOI 10.1038/nature730.
  • 53. VASSILOPOULOS G., WANG P-R., RUSSEL D. Trans­planted bone marrow regenerates liver by cell fusion. Nature advance online publication, 30 March 2003, DOI 10.1038/ nature01539.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ef044f9f-4cd2-4fae-929a-8680ddb88c62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.