University of Warsaw, Nowy Swiat 67, 00-046 Warsaw, Poland
Bibliografia
1. Ang, D., Liberek, K., Skowyra, D., Żylicz, M. & Georgopoulos, C. (1991) Biological role and regulation of the universally conserved heat shock proteins. J. Bid. Chem. 266,24233-24236.
2. Lindquist, S. & Craig, E.A. (1988) The heat- -shock proteins. Annu. Rev. Genet. 22,631-677.
4. Bukau, B. (1993) Regulation of the Escherichia coli heat-shock response. Mol. Microbiol. 9,671-680.
5. Grossman, A.D., Straus, D.B., Walter, W.A. & Gross, C. A. (1987) cJ32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. Genes Devel. 1,179-184.
6. Morimoto, R.I., Sarge, K.D. & Abravaya, K. (1992) Transcriptional regulation of heat shock genes. J. Biol. Chem. 267,21987-21990.
7. Jones, P.G., VanBogelen, R.A. & Neidhardt, F.C. (1987) Induction of proteins in response to low temperature in Escherichia coli. J. Bacterid. 169, 2092-2095.
8. Jones, P.G. & Inouye, M. (1994) The cold-shock response — a hot topic. Mol. Microbiol. 11, 811-819.
9. Broeze, R.J., Solomon, C.J. & Pope, D.I I. (1978) Effect of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudo- lnonas fluorescens. J. Bacterid. 134,861-374.
10. Friedman, H., Lu, P. & Rich, A. (1969) Ribosomal subunits produced by cold sensitive initiation of protein synthesis. Nature (London) 233,909-913.
11. Friedman, H., Lu, P. & Rich, A. (1971) Temperature control of initiation of protein synthesis in Escherichia coli. ]. Mol. Biol. 61,105-121.
12. Jones, P.G., Cashel, M., Glaser, G. & Neidhardt, F.C. (1992) Function of the relaxed-like state following tempera lure downshifts in Escherichia coli. J. Bacterid. 174,3903-3914.
13. Araki, T. (1991) Changes in rates of synthesis of individual proteins in a psychrophilic bacterium after a shift in temperature. Can. J. Microbiol. 37,840-847.
14. Av-Gay, Y., Aharanowitz, Y. & Cohen, G. (1992) Streptomyces contain a 7.0 kDa cold-shock protein. Nucleic Acids Res. 20,5478.
15. Clou tier, J., Provost, D., Nadeau, P. & Antoun, H. (1992) Heat and cold shock protein synthesis in arctic and temperate strains of Rhizobia. Awl. Envir. Microbiol. 58, 2846-2853.
16. Goldstein, Jv Politt, N.S. & Inouye, M. (1990) Major cold shock protein of E. coli. Proc. Natl Acad. Sci. U.S.A. 87, 283-287.
17. Lee, S.J.,Xie, A.Jiang, W.,Etchegray,J.-P.,Jones, P.G. & Inouye, M. (1994) Family of the major cold-shock protein, CspA (CS7.4) of Escherichia cdi, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol. Microbiol. 11,833-839.
18. Maniak, M. & Ncllen, W. (1988) A develop- mentally regulated membrane protein gene in Dictyostelium discoideum is also induced by heat shock and cold shock. Mol. Cell. Biol. 8,153-159.
19. Potier, P., Drevet, P., Gounot, A.M. & Hipkiss, A.R. (1990) Temperature- dependent changes in proteolytic activities and protein composition in psychrotrophic bacterium Arthrobacter globi- formis Si55. /. Gen. Microbiol. 136,283-291.
20. Roberts, M.E. & Innis, W.E. (1992) The synthesis of cold shock proteins and cold acclimation proteins in the psychrotrophic bacterium Aquaspirillum arcticum. Curr. Microbiol. 25, 275-278.
21. Willimsky, G., Bang, H., Fischer, G. & Marahiel, M.A. (1992) Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. /. Bacteriol. 174, 6326-6335.
22. Jones, P.G., Krah, R., Tafuri, S.R. & Wolfe, A.P. (1992) DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J. Bacteriol. 174, 5798-5902.
23. La Teana, A., Brandi, A., Falconi, M., Spurio, R., Pon, C.L. & Guarlezi, C.O. (1991) Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc. Natl. Acad. Sci. U.S.A. 88, 10907-10911.
24. Qoronfleh, M.H., Debouck, C. & Keller, J. (1992) Identification and characterization of novel low-temperature-inducible promoters of Escherichia coli. f. Bacteriol. 174,7902-7909.
25. Jiang, W., Jones, P. & Inouye, M. (1993) Chloramphenicol induces the transcription of the major cold shock gene of Escherichia coli, cspA. J. Bacterid. 175,5824-5828.
26. VanBogelen, R.A. & Neidhardt, F.C. (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 87, 5589-5593.
27. Das, A. (1992) How the phage lambda N gene product suppresses transcription termination: communication of RNA polymerase with regulatory proteins mediates by signals in nascent RNA. J. Bacterid. 174,6711-6716.
28. Friedman, D.I. (1984) Interactions of bacteriophage and host macromolecules in the growth of bacteriophage Microbiol. Rev. 48, 299-325.
29. Grunberg-Manago, M. (1987) Regulation of the expression of aminoacyl-tRNA synthetases and translation factors; in Escherichia coli and Salmonella typhimurium: cellular and molecular biology (Neidhardt, F.C., ed.) pp. 1386-1409, Amcr. Soc. Microbiol., Washington, D.C.
30. Guarlezi, CO. & Pon, C.L. (1990) Initiation of mRNA translation in prokaryotes. Biochemistry 29,5881-5889.
31. Nakamura, Y. & Mizusawa, S. (1985) In vivo evidence that the nusA and infB genes of E. coli are part of the same multi-gene operon which encodes at least four proteins. EMBO J. 4, 527-532.
32. Takata, R.T., Mukai,T. & Hori, K. (1985) Attenuation and processing of RNA from the rpsO-ptp transcription unit of Escherichia coli. Nucleic Acids Res. 13,72S9-7286.
33. Donovan, W.F. & Kushner, S.R. (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc. Natl. Acad. Sci. U.S.A. 86,120-124.
34. Walker, G.C. (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coii. Microbiol. Rev. 48,60-93.
35. Schnaid, M.R (1990) More than just "historve- -like" proteins. Cell 63,451-453.
36. Sugino, A., Peebles, C.L., Kreuzer, K.N. & Cozarclli, N.R. (1977} Mechanism of action of nalidixic acid: purification of Escherichia coli ml A gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc. Natl. Acad. Sci. U.SJi. 74,4767-4771.
37. Tanabe, H., Goldstein, J., Yang, M. 6c Inouye, M. (1992) Identification of the promoter region of the Escherichia coli major cold shock gene, cspA. J. Bacterial. 174,3867-3873.
38. Wistow,G. (1990) Cold shock and DNA binding. Nature (London) 344,823-824.
39. Chatterjee, S., Jiang, W., Emerson, D. & Inouye, M. (1993) The backbone structure of the major cold-shock protein CS7.4 of Escherichia coli in solution includes extensive p-sheet structure. J. Biochem. 114,663-669.
40. Schindelin, H., Jiang, W., Inouye, M. 6c Heine- mann, U. (1994) Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 91,5119-5123.
41. Newkirk, K., Feng, W., Jiang, W., Tejero, K., Emerson, S.D., Inouye, M. 6c Montelione, G.T. (1994) Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: Identification of the binding epitope for DNA. Proc. Natl. Acad. Sci. U.S.A. 91,5114-5118.
42. Landsman, D. (1992) RNP-1, and RNA-binding motif is conserved in DNA-binding cold shock domain. Nucleic Acids Res. 20,2861-2864.
43. Schnuchel, A., Witschech, R., Czisch, M., Merrier, M., Willimsky, G., Graumann, P., Marahiel, M.A. 6c Holah, T.A. (1993) Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature (London) 364,169-171.
44. Schindelin, H., Marahiel, M.A. 6c Heinemann, U. (1993) Universal nucleic acid binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature (London) 364, 164-168.
45. Araki, T. (1991) The effect of temperature shifts on protein synthesis by the psychrcphilic bacterium Vibrio sp. strain ANT-300. J. Gen. Microbiol. 137,817- 826.
46. Taura, T., Kusukawa, N., Yura, T. & Ito, K. (1989) Transient shut off of Escherichia coli heat shock protein synthesis upon temperature shift down. Biochem. Biophys. Res. Commun. 163,438-443.
47. Cashel, M. & Rudd, K.E. (1987) The stringent response; in Escherichia coli and Salmonella typhi- murium: cellular atul molecular biology (Neidha- rdt, F.C., ed.) pp. 1410-1438, Amcr. Soc. Microbiol. Washington, D.C.
48. Pao, C.C. 6c Dyess, B.T. (1981) Stringent control of RNA synthesis in the absence of guanosine 5'-diphosphate-3'-diphosphate. /. Biol. Chem. 256,2252-2257.
49. Mackow, E.R. 6c Chang, F.N. (1983) Correlation between RNA synthesis and ppGpp content in Escherichia coli during temperature shifts. Mol. Gen. Genet. 192,5-9.
50. Julseth, C.R. 6c Inniss, W.E. (1990) Induction of protem synthesis in response to cold shock in the psychrotrophic yeast Trichosporon pullulans. Can. /. Microbiol. 36,519-524.
51. Kondo, K. 6c Inouye, M. (1991) T1P1, a cold shock-inducible gene of Saccharomyces cerevisiae. J. Bid. Chem. 266,17537-17544.
52. Kondo, K. 6c Inouye, M. (1992) Yeast NSR1 protein that has structural similarity to mammalian nucleolin is involved in pre-rRNA processing. /. Biol. Chem. 267,16252-16258.
53. Kondo, K., Kowalski, L. & Inouye, M. (1992) Cold shock induction of yeast NSR1 protein and its role in pre-rRNA processing. f. Biol. Chem. 267,16259-16265.
54. Westphal, M., Miiller-Taubenberger, A., Noegel, A. & Gerisch, G. (1986) Transcript regulation and carboxyterminal extension of ubiquitin in Didyostelium discoideum. FEBS Lett. 209,92-96.
55. Salemo, G.L. & Pontis, H.G. (1988) Raffinose synthesis in ChloreUa vulgaris cultures after a cold shock. Plant Physiol. 89,648-651.