PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 46 |

Tytuł artykułu

Response of antioxidant systems to short-term NaCl stress in grapevine Rootstock-1616c and Vitis vinifera L. cv. Razaki

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present study examined free-radical scavenging enzyme activity and the levels of lipid peroxide, ascorbic acid, nitric oxide and glutathione in 1616C rootstock and the Razaki cultivar of Vitis vinifera L. under treatment with different concentrations of salt. At day 7, in leaves of both 1616C rootstock and cv. Razaki treated with 12 mM NaCl there were significant increases in glutathione peroxidase and catalase activity, and in the levels of thiobarbituric acid reactive substance and reduced glutathione, measured on a protein basis and fresh weight basis. Superoxide dismutase activity increased under NaCl treatment at day 7 in both samples versus the controls. In the Razaki cultivar, glutathione peroxidase activity was at maximum at day 7 under 12 mM NaCl treatment. Catalase activity was very low, and increased with increasing NaCl concentration in the Razaki cultivar and 1616C rootstock at day 7. In 1616C rootstock the nitrite level was lower than the controls within 4 days.

Wydawca

-

Rocznik

Tom

46

Opis fizyczny

p.151-158,fig.,ref.

Twórcy

autor
  • University of Ankara, 06100 Tandogan-Ankara, Turkey
autor
autor

Bibliografia

  • Alscher RG, Donahue J, and Cramer CL. 1997. Reactive oxygen species and antioxidant: relationships in green cells. Physiologia Plantarum 100: 224-233.
  • Aebi HE. 1987. Catalase. In: Bergmeyer HU [ed.], Methods of enzymatic analysis, 273-286. Verlag Chemie, Weinheim, Germany.
  • Braman RS, and Hendrix SA. 1989. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemiluminescence detection. Analytical Chemistry 61: 2715-2718.
  • Beligni MV, and Lamattina L. 2001. Nitric oxide in plants: the history is just beginning. Plant Cell and Environment 24: 267-278.
  • Davies KJ. 1986. Intracellular proteolytic systems may function as secondary antioxidant defense: A hypothesis. Journal of Free Radical Biology and Medicine 2: 155-173.
  • De Marco A, and Roubelakis-Angelakis KA. 1996. The complexity of enzymic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplasts. Plant Physiology 110: 137-145.
  • Dhindsa RS, Plumb-Dhindsa P, and Thorpe TA. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32: 93-101.
  • Elmadfa I, and Koenig J. 1996. Ascorbic acid transport and availability. Subcellular Biochemistry 25: 136-155.
  • Esaka M, Yamada N, Kitabayashi M, Setoguchi Y, Tsugeki R, Kondo M, and Nishimura M. 1997. cDNA cloning and differential gene expression of three catalases in pumpkin. Plant Molecular Biology 33: 141-155.
  • Foyer CH, Lelendais M, and Kunert KJ. 1994. Photooxidative stress in plants. Physiologia Plantarum 92: 696-717.
  • Glass GA, and Stark A-A. 1997. Promotion of glutathione-γ-glutamyl transpeptidase-dependent lipid peroxidation by copper and ceruloplasmin: the requirement for iron and the effects of antioxidant and antioxidant enzymes. Environmental Molecular Mutagenesis 29: 73-80.
  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, and Tannenbaum SR. 1982. Analysis of nitrate, nitrite and [15N] Nitrate in biological fluids. Analytical Biochemistry 126: 131-138.
  • Guevara I, Iwanejko J, Dembinska-Kiec A, Pankiewicz J, Wanat A, Anna P, Golabek I, Bartus S, Malczewska-Malec M, and Szczudlik A. 1998. Determination of nitrite/nitrate in human biological material by simple Griess reaction. Clinica Chimica Acta 274: 177-188.
  • Halliwell B. 1997. Antioxidant and human disease: a general introduction. Nutrition Reviews 55: S44-S52.
  • Kanazawa S, Sano S, KoshibaT, and Ushimaru T. 2000. Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence. Physiologia Plantarum 109: 211-216.
  • Kostyuk VA, and Potapovich AI. 1989. Superoxide-driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase. Biochemistry International 19: 1117-1124.
  • Lawrence RA, and Burk RF. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochemistry and Biophysics Research Communication 71: 952-958.
  • Lowry OH, Roselbrough NJ, Farr AL, and Randal RFJ. 1951. Protein measurement with the Folin-phenol reagent. Biological Chemistry 193: 265-275.
  • Mesaros S. 1999. Determination of nitric oxide saturated solution by amperometry on modified microelectrode. Methods in Enzymology 301: 160-168.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405.
  • Ogawa K, Kanematsu S, and Asada K. 1997. Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant and Cell Physiology 38: 1118-1126.
  • Okuda T, and Yokotsuka K. 1999. Levels of glutathione and activities of related enzymes during ripening of Koshu and Cabernet Sauvignon grapes and during winemaking. American Journal ofEnology and Viticulture 50: 264-270.
  • Owens CWI, and Belcher RV. 1965. A colorimetric micro-method for the determination of glutathione. Biochemical Journal 94: 705-11.
  • Papadakis AK, and Roubelakis-Angelakis KA. 1999. The generation of active oxygen species differs in tobacco and grapevine mesophyll protoplasts. Plant Physiology 121: 197-206.
  • Perez FJ, Villegas D, and Mejia N. 2002. Ascorbic acid and flavonoid-peroxidase reaction as a detoxifying system of H2O2 in grapevine leaves. Phytochemistry 60: 573-580.
  • Price AH, and Hendry GAF. 1989. Stress and the role of activated oxygen scavengers and protective enzymes in plants subjected to drought. Biochemical Society Transactions 17: 493-494.
  • Roe JH, and Kuether CA. 1967. 2,4 Dinitrophenyl-hydrazine procedures. In: Gyorgy P and Pearson WN [ed.], The vitamins, 35-49. Academic Press, New York, U.S.A.
  • Sen S, and Cheema IR. 1995. Nitric oxide synthase and calmodulin immunoreactivity in plant embryonic tissue. Biochemical Archives 11: 221-227.
  • Simmonds JA, and Simpson GM. 1972. Regulation of Krebs cycle and pentose phosphate pathway activities in the control of dormancy of Avena fatua. Canadian Journal of Botany 50: 1041-1048.
  • Shull S, Heintz NH, Perlasamy M, Manohar M, Janseen YM, Marsh JP, and Mossman BT. 1991. Differential regulation of antioxidant enzymes in response to oxidants. Journal of Biological Chemistry 266: 24398-24403.
  • Uchiyama M, and Mihara M. 1978. Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry 86: 271-278.
  • Wink DA, Vodovotz Y, Grisham MB, Degraff W, Cook JC, Pacelli R, Krishna MC, and Mitchell JB. 1999. Antioxidant effects of nitric oxide. Methods in Enzymology 301: 413-424.
  • Yildirim O, and Buyukbingol Z. 2002. Effects of supplementation with a combination of cobalt and ascorbic acid on antioxidant enzymes and lipid peroxidation levels in streptozotocin-diabetic rat liver. Biological Trace Element Research 90: 143-155.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-eeab3979-b540-44f5-ab54-e7f2c3e15cbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.