PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2002 | 47 | 2 |

Tytuł artykułu

Biomechanic consequences of differences in wing morphology between Tadarida brasiliensis and Myotis chiloensis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The wing morphology of bats is very diverse, and may correlate with energetic, behavioural, and ecological demands. If these demands conflict, wing shape may reflect compromise solutions. In this study, we compared the wing morphology of two bats, Tadarida brasiliensis (Geoffroy, 1824) and Myotis chiloensis (Waterhouse, 1828), that differ in body size, habitat, and foraging behaviour. We analyzed features of bio- mechanical and energetic relevance, and sought evidence of compromise solutions to energetic, ecological, and behavioural demands. We found that wing span of both species conformed to expectations based on allometric relationships, but that although the wing area of M. chiloensis did not differ from predictions, the wing area of T. brasiliensis was lower. M. chiloensis possessed an unusually low second moment of area of the humerus. Wing form of M. chiloensis is consistent with highly maneuverable flight needed to live between shrubs and wooded habitats, and its low aspect ratio and low wing loading indicate a high energetic cost and a low flight speed, respectively. The low humeral second moment of area may be related to a reduction of wing mass and may result in decreased inertial power. In contrast, T. brasiliensis showed high aspect ratio and wing loading, characteristic of high speed, energetically economic flight.

Wydawca

-

Czasopismo

Rocznik

Tom

47

Numer

2

Opis fizyczny

p.193-200,fig.,ref.

Twórcy

  • Universidad de Chile, Casilla 653, Santiago, Chile
autor
autor

Bibliografia

  • BaagGe H. J. 1987. The Scandinavian bat fauna: adaptative wing morphology and free flight in the field. [In: Recent advances in the study of bats. M. B. Fenton, P. Racey and J. M. V. Rayner, eds]. Cambridge University Press, Cambridge: 57-75.
  • Biewener A. A. 1990. Biomechanics of mammalian terrestrial locomotion. Science 250: 1097-1103.
  • Biewener A. A. and Dial K. P. 1995. In vivo strain in the humerus of pigeons (Columba livia) during flight. Journal of Morphology 225: 61-75.
  • Biknevicius A. R. 1993. Biomechanical scaling of limb bones and differential limb use in caviomorph rodents. Journal of Mammalogy 74: 95-107.
  • Bozinovic F., Contreras L. C., Rosenmann M. and Torres-Mura J. C. 1985. Bioenergética de Myotis chiloensis (Chiroptera: Vespertilionidae). Revista Chilena de Historia Natural 58: 39-45.
  • De la Cueva H., Fenton M. B., Hickey M. B. C. and Blake R. W. 1995. Energetic consequences of flight speeds of foraging red and hoary bats (Lasiurus borealis and Lasiurus cinereus; Chiroptera: Vespertilionidae). Journal of Experimental Biology 198: 2245-2251.
  • Findley J. S., Studier E. H. and Wilson D. E. 1972. Morphologic properties of bat wings. Journal of Mammalogy 53: 429-444.
  • Gantz A. and Martínez D. R. 2000. Orden Chiroptera. [In: Mamíferos de Chile. A. Muñoz and J. YáQez, eds]. Cea Ediciones, Valdivia: 53-65.
  • Hayward B. and Davis R. 1964. Flight speeds in western bats. Journal of Mammalogy 45: 236-242.
  • Kirkpatrick S. J. 1994. Scale effects on the stresses and safety factors in the wing bones of birds and bats. Journal of Experimental Biology 190: 195-215.
  • Kopka T. 1973. Beziehungen zwischen Flügelfläche und Körpergrösse bei Chiropteren. Zeitschrift für Wissenschaftliche Zoologie 185: 235-284.
  • Lawlor T. E. 1973. Aerodynamic characteristics of some neotropical bats. Journal of Mammalogy 35: 103-104.Norberg R. Q. 1981. Optimal flight speeds in birds when feeding young. Journal of Animal Ecology 50: 473-477.
  • Norberg U. M. 1987. Wing form and flight mode in bats. [In: Recent advances in the study of bats. M. B. Fenton, P. Racey and J. M. V. Rayner, eds]. Cambridge University Press, Cambridge: 43-57.
  • Norberg U. M. 1994. Wing design, flight performance, and habitat use in bats [In: Ecological morpho­logy: integrative organismal biology. P. C. Wainwright and S. M. Reilly, eds]. The University of Chicago Press, Chicago: 205-239.
  • Norberg U. M. 1995. How long tail and changes in mass and wing shape affect the cost for flight in animals. Functional Ecology 9: 48-54.
  • Norberg U. M. 1996. Energetics of flight. [In: Avian energetics and nutritional ecology. C. Carey, ed]. Chapman & Hall, New York: 199-249.
  • Norberg U. M., Brooke A. P. and Trewhella W. J. 2000. Soaring and non-soaring bats of the family Pteropodidae (flying foxes, Pteropus spp.): wing morphology and flight performance. Journal of Experimental Biology 203: 651-664.
  • Norberg U. M., Kunz T. H., Steffensen J. F., Winter Y. and Von Helversen O. 1993. The cost of hovering and forward flight in a nectar-feeding bat, Glossophaga soricina, estimated from aero­dynamic theory. Journal of Experimental Biology 182: 207-227.
  • Norberg U. M. and Rayner J. M. V. 1987. Ecological, morphology and flight in bats (Mammalia: Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transaction of the Royal Society of London B 316: 335-427.
  • Nowak R. M. 1999. Walker's Mammals of the world. 6th ed. The John Hopkins University Press, Baltimore: 1-1936.
  • Rayner J. M. V. 1979. A new approach to animal flight mechanics. Journal of Experimental Biology 80: 17-54.
  • Rayner J. M. V. 1982. Avian flight energetics. Annual Review of Physiology 44: 109-119.
  • Rayner J. M. V. 1984. The mechanics of flapping flight in bats. [In: Recent advances in the study of bats. M. B. Fenton, P. Racey and J. M. V. Rayner, eds]. Cambridge University Press, Cambridge: 23-42.
  • Spear L. B. and Ainley D. G. 1997. Flight behaviour of seabirds in relation to wind direction and morphology. Ibis 139: 221-233.
  • Svoboda P. L. and Choate J. R. 1987. Natural history of the Brazilian free-tailed bat in the San Luis Valley of Colorado. Journal of Mammalogy 68: 224-234.
  • Swartz S. M. 1997. Allometric pattering in the limb skeleton of bats: implications for the mechanics and energetic of powered flight. Journal of Morphology 234: 277-294.
  • Swartz S. M., Bennett M. B. and Carrier D. R. 1992. Wing bones stresses in free flying bats and the evolution of skeletal design for flight. Nature 359: 726-729.
  • Tholleson M. and Norberg U. M. 1991. Moments of inertia of bat wings and body. Journal of Experimental Biology 158: 19-35.
  • Van den Berg C. and Rayner J. M. V. 1995. The moment of inertia of bird wings and the inertial power requeriment for flapping flight. Journal of Experimental Biology 198: 1655-1664.
  • Wainwright S. A., Biggs W. D., Currey J. D. and Gosline J. M. 1982. Mechanical design in organisms. Princeton University Press, New Jersey: 1-423.
  • Webb P. I., Sedgeley J. A. and O'Donnell F. J. 1998. Wing shape in New Zealand lesser short-tailed bats (Mystacina tuberculata). Journal of Zoology, London 246: 462-465.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ec6c76fb-db03-48de-a96c-0601cf5c880f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.