PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 53 | Suppl. |

Tytuł artykułu

Polymerizer-mediated intracellular movement

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bacterial movement inside the cytoplasm is a major virulence factor in that it is necessary for efficient colonization of the infected tissues. Molecules from both the host and the pathogen present possible sites of pharmacologic intervention. Because locomoting Listeria and Shigella mimic the activated state of the leading edge of nonmuscle cells, these pathogens are powerful tools for dissecting the molecular machinery of actin-based motility. Analysis of the movement linked to cytoskeleton may lead to: (I) improved understanding of the mechanisms of disease transmission, including carriers and carrier states, pathogen movements, environmental factors and pharmacokinetics of the uptake and residues of vaccines and other biologies, and drugs in cultivated organisms; (II) new therapeutic developments, since it identifies the molecular targets involved in the pathogenicity of Listeria and Shigella and vaccinia intracellular enveloped virus. Recent knowledge about the intracellular movement in cytoplasm may lead to a better understanding of the processes governing actin dynamics within the cell and disease spread.

Wydawca

-

Rocznik

Tom

53

Numer

Opis fizyczny

p.35-38,ref.

Twórcy

  • Warsaw University, Warsaw, Poland
autor

Bibliografia

  • Bernardini M.L., J. Mounier, H. d'Hauteville, M. Coquis-Rondon and R J. Sansonetti. 1989. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc. Natl. Acad. Sci. USA 86: 3867-3871.
  • Bliska J.B. and S. Falkow. 1993. The role of host tyrosine phosphorylation in bacterial pathogenesis. Trends Genet. 9: 85-89.
  • Buchwalow I.B., M. Emoto, M. Brich and S.H. Kaufmann. 1997. Involvement of tubulin and inhibitory G proteins in the interaction of Listeria monocytogenes with mouse hepatocytes. Infect. Immun. 65: 1095-1097.
  • Chastellier de C. and P. Berche. 1994. Fate of Listeria monocytogenes in murine macrophages: evidence for simultaneous killing and survival of intracellular bacteria. Infect. Immun. 62: 543-553.
  • Chakraborty T, F. Ebel, E. Domann, K. Niebuhr, B. Gerstel, S. Pistor, C.J. Temm-Grove, B.M. Jockusch, M. Reinhard, U. Walter and J.Wehland. 1995. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBOJ. 14: 1314-1321.
  • Chakraborty T. 1999. Molecular and cell biological aspects of infection by Listeria monocytogenes. Immunobiology 201: 155-63.
  • Cudmore S., P. Cossart, G. Griffiths and M. Way. 1995. Actin-based motility of vaccinia virus. Nature 378: 636-638.
  • Domann E., J. Wehland, M. Rohde, S. Pistor, M. Hartl, W. Goebel, M. Leimeister-Wachter, M. Wuenscher and T. Chakraborty. 1992. A novel bacterial gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBOJ. 11: 1981-1990.
  • Egile C., T.P. Loisel, V. Laurent, R. Li, D. Pantaloni, P.J. Sansonetti, M.F. Carlier. 1999. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. Cell Biol. 146: 1319-1332.
  • Frischknecht F., V. Moreau, S. Rottger, S. Gonfloni, I. Reckmann, G. Superti-Furga and M. Way. 1999.Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401: 926-929.
  • Gertler F.B., K. Niebuhr, M. Reinhard, J. Wehland and P. Soriano. 1996. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87: 227-239.
  • Gouin E., H. Gantelet, C. Egile, I. Lasa, H. Ohayon, V. Villiers, P. Gounon, P.J. Sansonetti and P. Cossart. 1999. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes. Shigella flexneri and Rickettsia conorii. J. Cell Sci. 112: 1697-1708.
  • Heinzen R.A., S.S. Grieshaber, L.S. Van Kirk and C.J. Devin. 1999. Dynamics of actin-based movement by Rickettsia rickettsii in vero cells. Infect Immun 67: 4201-4207.
  • Kocks Cm E. Gouin, M. Tabouret, P. Berche, H. Ohayon and P. Cossart. 1992. Listeria monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68: 521-531.
  • Kocks C, R. Hellio, P. Gounon, H. Ohayon and P. Cossart. 1993. Polarized distribution of Listeria monocytogenes surface protein ActA at the site of directional actin assembly. J. Cell Sci. 105: 699-710.
  • Kuo S.C. and J.L. McGrath. 2000. Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature 407: 1026-1029.
  • Makino S., C. Sasakawa, T. Kamata and M. Yoshikawa. 1986. A genetic determinant required for continuous reinfection of adjacent cells on a large plasmid in Shigella flexneri 2a. Cell 46: 551-555.
  • Moreau V, F. Frischknecht, I. Reckmann, R. Vincentelli, G. Rabut, D. Stewart and M. Way. 2000. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat. Cell Biol. 2: 441-448.
  • Moulder J.W. 1985. Comparative biology of intracellular parasitism. Microbiol Rev. 49: 298-337.
  • Ogawa H., A. Nakamura and R. Nakaya. 1968. Cinemicrographic study of tissue cell cultures infected with Shigella flexneri. Jpn. J. Med. Sci. Biol. 21: 259-273.
  • Pistor S., L. Gröbe, A.S. Sechi, E. Domann, B. Gerstel, L.M. Machesky, T. Chakraborty and J. Wehland. 2000.Mutations of arginine residues within the 146-KKRRK-150 motif of the ActA protein of Listeria monocytogenes abolish intracellular motility by interfering with the recruitment of the Arp2/3 complex. J. Cell Sci. 113: 3277-3287.
  • Portnoy D.A., R.K. Tweten, M. Kehoe and J. Bielecki. 1992. Capacity of listeriolysin O, streptolysin O, and perfringolysin O to mediate growth of Bacillus subtilis within mammalian cells. Infect. Immun. 60: 2710-2717.
  • Raybourne R.B. and V.K. Bunning. 1994. Bacterium-host cell interactions at the cellular level: fluorescent labelling of bacteria and analysis of short-term bacterium-phagocyte interaction by flow cytometry. Infect Immun. 62: 665-672.
  • Sansonetti P.J., J. Arondel, A. Fontaine, H. d'Hauteville and M.L. Bernardini. 1991. ompB (osmo-regulation) and icsA (cell-to-cell spread) mutants of Shigella flexneri: vaccine candidates and probes to study the pathogenesis of shigellosis. Vaccine 9: 416-422.
  • Sansonetti P.J., J. Arondel, J.R. Cantey, M.C. Prevost and M. Huerre. 1996. Infection of rabbit Peyer's patches by Shigella flexneri: effect of adhesive or invasive bacterial phenotypes on follicle-associated epithelium. Infect. Immun. 64: 2752-2764.
  • Tang P., I. Rosenshine, P. Cossart and B.B. Finlay. 1996. Listeriolysin O activates mitogen-activated protein kinase in eucaryotic cells. Infect. Immun. 64: 2359-2361.
  • Tang P., C.L. Sutherland, M.R. Gold and B.B. Finlay. 1998. Listeria monocytogenes invasion of epithelial cells requires the MEK-1/ERK-2 mitogen-activated protein kinase pathway. Infect. Immum. 66: 1106-1112.
  • Tilney L.G. and D.A. Portnoy. 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite Listeria monocytogenes. J. Cell Biol. 109: 1597-1608.
  • Welch M.D., A. Iwamatsu and T.J. Mitehison. 1997. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385: 265-269.
  • Zalevsky J., I.I. Grigorova and R.D. Mullins. 2000. Activation of the Arp2/3 complex by the Listeria ActA protein: ActA binds two actin monomers and three subunits of the Arp2/3 complex. J. Biol. Chem. 276: 3468-3475.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ec5ffa3b-e707-4eab-8634-b5c00c387336
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.