PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 28 | 2 |

Tytuł artykułu

Adaptation of the photosynthetic apparatus of Nitellopsis obtusa to changing light intensity at the molecular level: different pathways of a singlet excitation quenching

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effect of pro longed illumination (60 min) with photosynthetically active monochromatic radiation of low intensity (3 μmol-m⁻² ·s⁻¹) and high intensity (60 mmol m⁻² ·s⁻¹), corresponding to the physiological conditions and light stress conditions, respectively, was studied in the algae Nitellopsis obtusa. Illumination of Nitellopsis obtusa cells with strong light was associated with activation of the xanthophyll cycle, manifested by the deepoxidation of violaxanthin and accumulation of antheraxanthin and zeaxanthin. At the same time, the efficient singlet excitation quenching in the photosynthetic apparatus was activated, as demonstrated by the decrease in the intensity of the chlorophyll a fluorescence emission by ca 50 %. The difference of the fluorescence excitation spectra recorded before and after the light treatment match the difference absorption spectrum of the xanthophyll cycle pigments. The illumination with low light intensity resulted also in the chlorophyll a fluorescence quenching but the effect was very small (less than 10 %). The fluorescence quenching is interpreted in terms of the energy transfer between the Qy energy level of chlorophyll a and the 2¹Ag⁻ energy level of zeaxanthin. The singlet energy levels of carotenoids, corresponding to the green spectral region, are also taken into consideration in the interpretation of the excitation energy exchange between the carotenoids and chlorophylls. Possible molecular mechanisms involved in the activation of the strong and the weak excitation quenching, including violaxanthin isomerization, and possible physiological functions of such pathways of energy transfer are discussed.

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.127-136,fig.,ref.

Twórcy

  • Maria Curie-Sklodowska University, 20-031 Lublin, Poland
autor
autor

Bibliografia

  • Allen J. 1992. How does protein phosphorylation regulate photosynthesis? Trends Biochem. Sci. 17: 12-17.
  • Avenson T.J. Cruz J.A. Kramer D.M. 2004. Modulation of energy-dependent quenching of excitons in antennae of higher plants. Proc. Natl. Acad. Sci. USA 101: 5530-5535.
  • Bukhov N.G. Drozdova I.S. Bondar V.V. 1995. Light response curves of photosynthesis in leaves of sun-type and shade-type plants grown in blue or red light. J. Photochem. Photobiol. B: Biol. 30: 39-41.
  • Canaani O. Barber J. Malkin S. 1984. Evidence that phosphorylation and dephosphorylation regul ate the distribution of excitation energy between the two photosystems of photosynthesis in vivo: photoacoustic and fluorimetric study of an intact leaf. Proc. Natl. Acad. Sci. USA 81: 1614-1618.
  • DemmigAdams B. Adams W.W. 1996. Xanthophyll cycle and light stress in nature: Uniform response to excess direct sunlight among higher plant species. Planta 198: 460-470.
  • Ehleringer J. Forseth I. 1980. Solar tracking by plants. Science 210: 1094-1098.
  • Eskling M. Arvidsson P.O. Akerlund H.E. 1997. The xanthophyll cycle its regulation and components. Physiologia Plantarum 100: 806-816.
  • Fisher F.J.F. Ehret D.L. Lister G.R. Hollingdale J. 1989. Light quality and sun tracking in Malva naglecta. Can. J. Biol. 67: 515-520.
  • Frank H.A. Bautista J.A. Josue S.J. Young A.J. 2000. Mechanism of nonphotochemical quenchi ng in green plants: energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemi st ry 39: 2831-2837.
  • Frank H.A. Cua A. Chynwat V. Young A.J. Gosztola D. Wasilewski M.R. 1994. Photophysics of the caroteniods astociated with the xanthophyll cycle in photosynthesis. Photosynth. Res. 41: 389-395.
  • Fujii R. Fujino T. Inaba T. Nagae H. Koyama Y. 2004. Internal conversion of 1B(u)(+) -> 1B(u)(-) -> 2A(g)(-) and fluotescence from the 1B(u)(-) state in all-trans-neurosporene as probed by up-conversion spectroscopy. Chem. Phys. Lett. 384: 9-15.
  • Fujii R. Furuichi K. Zhang J.P. Nagae H. Hashimoto H. Koyama Y. 2002. Cis-to-trans isomerization of spheroidene in the triplet state as detected by time-resolved absorption spectroscopy. J. Phys. Chem. A 106: 2410-2421.
  • Furuichi K. Sashima T. Koyama Y. 2002. The first detection of the 3Ag- state in carotenoids usmg resonance-Raman extitation protiles. Chem. Phys. Lett. 356: 547-555.
  • Gabryś H. 2004. Blue light-induced orientation movements of chloroplasts in higher plants: Recent progress in the study of their mechanisms. Acta Physiol. Plant. 26: 473-478.
  • Grudzinski W. Krupa Z. Garstka M. Maksymiec W. Swartz T.E. Gruszecki W.I. 2002. Conformational rearrangements in light-harvesting complex II accompanying light-induced chlorophyll a fluorescence quenching. Biochim. Biophys. Acta 1554: 108-117.
  • Grudzinski W. Matula M. Sielewiesiuk J. Kernen P. Krupa Z. Gruszecki W.I. 2001. Eftect of 13-cis violaxanthin on organization of light harvesting complex II in monomolecular layers. Biochim. Biophys. Acta 1503: 291-302.
  • Gruszecki W.I. Grudzinski W. Banaszek-Glos A. Matula M. Kernen P. Krupa Z. Sielewiesiuk J. 1999.
  • Xanthophyll pigments in light-harvesting complex II in monomolecular layers: localisation energy transfer and orientation. Biochim. Biophys. Acta 1412: 173-83.
  • Gruszecki W.I. Kernen P. Krupa Z. Strasser R.J. 1994. Involvement of xanthophyll pigments in reguta- tion of light-driven excitation quenching in light-hart vesting complex of Photosystem II. Biochim. Biophys. Acta 1188: 235-242.
  • Gruszecki W.I. Krupa Z. 1993. Changes of excitation spectra of in vivo chlorophyll fluorescence during induction of photosynthesis. Z. Naturforsch. 48c: 46-51.
  • Gruszecki W.I. Matula M. Mysliwa-Kurdziel B. Kernen P. Krupa Z. Strzalka Z. 1997. Effect of xanthophyll pigments on fluorescence of chlorophyll a in LHC II embedded to liposomes. J. Photochem. Photobiol. B: Biol. 37: 84-90.
  • Gruszecki W.I. Stiel H. Niedzwiedzki D. Beck M. Milanowska J. Lokstein H. Leupold D. 2005. To t
  • wards elucidating the energy of the first excited singlet state of xanthophyll cycle pigments by X-ray absorption spectroscopy. Biochim. Biophys. Acta 1708: 102-107.
  • Holt N.E. Fleming G.R. Niyogi K.K. 2004. Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43: 8281-8289.
  • Holt N.E. Zigmantas D. Valkunas L. Li X.P. Niyogi K.K. Fleming G.R. 2005. Carotenoid cation formation and the regutation of photosynthetic light harvesting. Science 307: 433-436.
  • Jaskowska A. Borc R. Dudziak A. Spiewla E. 1999. Oscillatory character of changes in ultraweak luminescence from Nitella cells. Acta Soc. Bot. Pol. 68: 281-285.
  • Jaskowska A. Borc R. Milczarek I. Dudziak A. Spiewla E. 2001. Kinetics studies of ultraweak luminescence induced by ascorbic acid in Characeae cells and their structures. Luminescence 16: 51-56.
  • Koyama Y. Rondonuwu F.S. Fujii R. Watanabe Y. 2004. Light-harvesting function of carotenoids in photo-synthesis: the roles of the newly found 1(1)Bu- state. Biopolymers 74: 2-18.
  • Latowski D. Akerlund H.E. Strzalka K. 2004a. Violaxanthin de-epoxidase the xanthophyll cycle em zyme requires lipid inverted hexagonal structures for its activity. Biochemistry 43: 4417-4420.
  • Latowski D. Grzyb J. Strzalka K. 2004b. The xanthophyll cycle - molecular mechanism and physiological significance. Acta Physiol. Plant. 26: 197-212.
  • Masojidek J. Kopecky J. Koblizek M. Torzillo G. 2004. The xanthophyll cycle in green algae (Chloro t phyta): Its role in the photosynthetic apparatus. Plant Biology 6: 342-349.
  • Mayer W.-E. Hampp R. 1995. Movement of PuRL nated Leaves Springer-Verlag Berlin Heidelberg.
  • Milanowska J. Gruszecki W.I. 2005. Heat-induced and light-induced isomerization of the xanthophyll pigment zeaxanthin. J Photochem Photobiol B: Biol. in press.
  • Milczarek I. Jaskowska A. Golebiowska D. 2003. Influence of humic adds (HA) DCMU and light on the ultraweak luminescence (UL) of characeae cells. Electronic Journal of Polish Agricultural Universities 6.
  • Pascal A.A. Liu Z. Broess K. van Oort B. van Amerongen H. Wang C. Horton P. Robert B. Chang W. Ruban A. 2005. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436: 134-137.
  • Pfundel E. Strasser R.J. 1988. Violaxanthin de-ept oxidase in etiolated leaves. Photosynth. Res. 15: 67-73.
  • Polivka T. Sundstrom V. 2004. Ultrafast dynamics of carotenoid excited States-from sotution to natural and artificial systems. Chem Rev 104: 2021-71.
  • Ruban A.V. Lavaud J. Rousseau B. Guglielmi G. Horton P. Etienne A.L. 2004. The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosynthesis Research 82: 165-175.
  • Skierczynska J. Spiewla E. Bulanda W. Zolnierczuk R. Sielewiesiuk J. 1973. Variations of the longitudal electric al re tistance of Characeae. J. Exp. Bot. 78: 47-63.
  • Standfuss J. Terwisscha van Scheltinga A.C. Lamborghini M. Kuhlbrandt W. 2005. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J. 24: 919-928.
  • Śpiewla E. Jaśkowska A. Segit P. Tokarska- Schlattner M. 1995. Electrical potentials and its fluctuations in nodal cells of Nitellopsis obtusa. Acta Soc. Bot. Pol. 64: 379-383.
  • Thanisawanyangkura S. Sinoquet H. Rivet P. Crete- net M. Jallas E. 1997. Leaf orientation and sulit leaf area distribution in cotton. Agr. Forest Meteorol. 86: 1-15.
  • Tlalka M. Gabrys H. White N.S. Fricker M.D. 1996. Blue-light sensitive chloroplast movement. UV / Blue light: perception and responses in plants and microorganisms.
  • Yamamoto H.Y. Higashi R.M. 1978. Violaxanthin de-epoxidase. Lipid composition and substrate specificity. Arch. Biochem. Biophys. 190: 514-522.
  • Young A. Philip D. Ruban A. Horton P. Frank H. 1997. The xanthophyll cycle and carotenoid-mediated dissipation of excess excitation energy in photosynthesis. Pure Appl. Chem. 69: 2125-2130.
  • Young A.J. Frank H.A. 1996. Energy transter reactions involving carotenoids: quenching of chlorophyll fluorescence. J. Photochem. Photobiol. B:Biol. 36: 3-15.
  • Zer H. Vink M. Keren N. Dilly-Hartwig H.G. Paulsen H. Herrmann R.G. Andersson B. Ohad I. 1999. Regulation of thylakoid protein phosphorylation at the substrate level: Reversible light-induced conformational changes expose the phosphorylation site of the light-harvesting complex II. Proc. Natl. Acad. Sci. USA 96: 8277-8282.
  • Zurzycki J. 1980. Blue Light-Induced Intracellular Movements. In: The Blue Light Syndrome ed. by H. Senger Springer-Verlag Berlin Heidelberg New York: 50-68.
  • Zurzycki J. Walczak T. Gabryś H. Kajfosz J. 1983. Chloroplast translocations in Lemna trisulca L. induced by continuous irradiation and by light pulses. Planta 157: 502-510.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-eba93fe2-9437-4add-b697-8e0e6a80184e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.