EN
Burrow systems play an important role in the life of rodents in arid environments. The objectives of this study were to examine the hypothesis that group living is beneficial to the semifossorial rodent, and determine whether Microcavia australis (Geoffroy and d’Orbigny, 1833) burrows communally and/or shares burrow systems. I related the structure of burrow systems to the number of cavies inhabiting them, in two habitats with different soil hardness and different plant cover (El Leoncito and Ñacuñán). El Leoncito has a harsh climate, with lower plant density and softer soil than Ñacñuán. A total of 18 burrow systems were characterized at Ñacuñán, and 12 at El Leoncito. Social groups at El Leoncito have a higher number of individuals than at Ñacuñán, but the structure of burrow systems in softer soil is narrower (small area size), with fewer holes, less slope and depth of galleries, and with no relationship between the number of holes and burrow area. Therefore, considering the development of the burrow system as an indicator of the cost of burrowing, I conclude that communal burrowing to reduce the energetic cost of burrowing per capita is not the primary cause of cavy sociality. M. australis were not active diggers, because digging behaviour was rarely recorded at either site. Burrow systems of cavies persisted over the years of study, occupied by the same cavies and new offspring, and digging new burrow systems and tunnels was a relatively rare event at both sites. Under the burrow-sharing hypothesis, sociality could prevail in M. australis that regularly dig to build and maintain a burrow system which they use for a long time.