PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 61 | 4 |

Tytuł artykułu

Vasopressin release from the rat hypothalamo-neurohypophysial system: effects of gonadotrophin-releasing hormone [GnRH], its analogues and melatonin

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The influence of gonadotrophin-releasing hormone (GnRH) and its analogues (i.e., agonist and antagonist) on vasopressin (VP) release from the rat hypothalamo-neurohypophysial (H-N) system was studied both in vitro and in vivo. Additionally, it was determined whether the possible response of vasopressinergic neurones to these peptides could be modified by melatonin through a cAMP-dependent mechanism. In this study we demonstrate, for the first time, that the highly selective GnRH agonist (i.e., [Des-Gly10,D-His(Bzl)6,Pro-NHEt9]-LHRH; histrelin) stimulates the release of VP from the rat H-N system, while native GnRH and its antagonist remain inactive in modifying this process in vitro. Melatonin significantly inhibited basal and histrelin-induced release of VP in vitro, but displayed no significant influence on VP secretion when GnRH or its antagonist were present in a medium. Melatonin fully suppressed forskolin-stimulated VP release from the rat H-N system. On the other hand, addition of forskolin to a medium containing both histrelin and melatonin did not further alter the inhibitory influence of melatonin on the histrelin-dependent release of VP in vitro. After intracerebroventricular (i.c.v.) infusion of native GnRH or its agonist, blood plasma VP concentration was significantly higher than in control animals, which was accompanied by decreased content of the hormone in the neurohypophysis. Intravenous (i.v.) injection of melatonin did not change, in any subgroup, blood plasma VP concentration, when compared to the vehicle-injected rats. However, the neurohypophysial levels of the hormone were significantly higher after melatonin injection in control, GnRH- and histrelin-infused animals. Our present results suggest that activation of the GnRH receptor in the hypothalamus is involved in stimulation of VP secretion from the rat H-N system. We have also shown that melatonin, at a concentration close to its physiological level in the blood, significantly reduces the in vitro response of vasopressinergic neurones to a GnRH agonist - histrelin; this effect of melatonin could be mediated through intracellular processes that involve, among others, the cAMP-dependent mechanism.

Wydawca

-

Rocznik

Tom

61

Numer

4

Opis fizyczny

p.459-466,fig.,ref.

Twórcy

  • Medical University of Lodz, 60 Narutowicza Street, 90-136 Lodz, Poland
autor
autor

Bibliografia

  • Chowdrey HS, Lightman SL. Role of central amino acids and peptide-mediated pathways in neurohypophysial hormone release. Ann NY Acad Sci 1993; 689: 183-193.
  • Sladek CD, Kapoor JR. Neurotransmitter/neuropeptides interactions in the regulation of neurohypophysial hormone release. Exp Neurology 2001; 171: 200-209.
  • Juszczak M. Neurokinin A and the neurohypophysial response to melatonin: in vitro studies. J Physiol Pharmacol 2002; 53: 823-834.
  • Juszczak M, Stempniak B. Melatonin inhibits the substance P-induced secretion of vasopressin and oxytocin from the rat hypothalamo-neurohypophysial system: in vitro studies. Brain Res Bull 2003; 59: 393-397.
  • Juszczak M, Boczek-Leszczyk E, Stempniak B. Effect of melatonin on the vasopressin secretion as influenced by tachykinin NK-1 receptor agonist and antagonist: in vivo and in vitro studies. J Physiol Pharmacol 2007; 58: 829-843.
  • Viero C, Dayanithi G. Neurosteroids are excitatory in supraoptic neurons but inhibitory in the peripheral nervous system: it is all about oxytocin and progesterone receptors. Prog Brain Res 2008; 170: 177-192.
  • Ciosek J, Izbebska K. Thyrotropin-releasing hormone modulates vasopressin and oxytocin synthesis and release from the hypothalamo-neurohypophysial system of different age male rats. J Physiol Pharmacol 2009; 60(2): 63-70.
  • Rossi NF, Maliszewska-Scislo M. Role of paraventricular nucleus vasopressin V1A receptors in the response to endothelin 1 activation of the subfornical organ in the rat. J Physiol Pharmacol 2008; 59(Suppl. 8): 47-59.
  • Bojanowska E, Lewandowska A, Stempniak B, Guzek JW. Neurohypophysial response to haemorrhage or dehydration: interactions of vasopressin and luliberin. Pathophysiology 1995; 2: 41-46.
  • Bojanowska E, Guzek JW, D¹browski R. Luteinizing hormone-releasing hormone and function of the magnocellular vasopressinergic system. Neuropeptides 1999; 33: 301-305.
  • Millar RP. GnRHs and GnRH receptors. Anim Reprod Sci 2005; 88: 5-28.
  • Hiney JK, Sower SA, Yu WH, McCan SM, Dees WL. Gonadotropin-releasing hormone neurons in the preoptic-hypothalamic region of the rat contain lamprey gonadotropin-releasing hormone III, mammalian luteinizing hormone-releasing hormone or both peptides. Proc Natl Acad Sci USA 2002; 99: 2386-2391.
  • Mongiat LA, Fernandez MO, Lux-Lantos VA, Guilgur LG, Somoza GM, Libertun C. Experimental data supporting the expression of the highly conserved GnRH-II in the brain and pituitary gland of rats. Regul Pept 2006; 136: 50-57.
  • Dudas B, Merchenthaler I. Three-dimensional representation of the neurotransmitter system of the human hypothalamus: inputs of the gonadotrophin hormone-releasing hormone neuronal system. J Neuroendocrinol 2006; 18: 79-95.
  • Stopa EG, Kuo LeBlanck V, Hill DH. A general overview of the anatomy of the neurohypophysis. Ann NY Acad Sci 1993; 689: 6-15.
  • Thind KK, Boggan JE, Goldsmith PC. Interactions between vasopressin- and gonadotropin-releasing hormone-containing neuroendocrine neurons in the monkey supraoptic nucleus. Neuroendocrinology 1991; 53: 287-297.
  • Kiesel LA, Rody A, Greb RR, Szilagyi A. Clinical use of GnRH analogues. Clin Endocrinol 2002; 56: 677-687.
  • Juszczak M. The role of pineal gland and melatonin in regulation of the neurohypophysial hormones synthesis and secretion - the present status of knowledge. Pol J Endocrinol 2004; 55: 206-211.
  • Rasmussen DD. Diurnal modulation of rat hypothalamic gonadotropin-releasing hormone release by melatonin in vitro. J Endocrinol Invest 1993; 16: 1-7.
  • Roy D, Angelini NL, Fujieda H, Brown GM, Belsham DD. Cyclical regulation of GnRH gene expression in GT1-7 GnRH-secreting neurons by melatonin. Endocrinology 2001; 142: 4711-4720.
  • Roy D, Belsham DD. Melatonin receptor activation regulates GnRH gene expression and secretion in GT1-7 GnRH neurons. J Biol Chem 2002; 277: 251-258.
  • Balik A, Kretschmannova K, Mazna P, Svobodova I, Zemkova H. Melatonin action in neonatal gonadotrops. Physiol Res 2004; 53(Suppl. 1): S153-S166.
  • Vanecek J, Vollrath L. Melatonin inhibits cyclic AMP and cyclic GMP accumulation in the rat pituitary. Brain Res 1989; 505: 157-159.
  • Vanecek J, Watanabe K. Mechanisms of melatonin action in the pituitary and SCN. Adv Exp Med Biol 1999; 460: 191-198.
  • Yasin SA, Costa A, Besser GM, Hucks D, Grossman A, Forsling ML. Melatonin and its analogs inhibit the basal and stimulated release of hypothalamic vasopressin and oxytocin in vitro. Endocrinology 1993; 132: 1329-1336.
  • Noble EP, Wurtman RJ, Axelrod J. A simple and rapid method for injecting H3-norepinephrine into the lateral ventricle of the brain. Life Sci 1967; 6: 281-291.
  • Yasin SA, Grossman A, Forsling ML. Diurnal variation in the effect of melatonin on neurohypophysial hormone release from the rat hypothalamus. Brain Res Bull 1996; 39: 1-5.
  • Lipinska S, Forys S, Lipinska J. The post-haemorrhagic vasopressin release into the blood. J Physiol Pharmacol 2004; 55: 73-83.
  • McKinley MJ, Mathai ML, McAllen RM, et al. Vasopressin secretion: osmotic and hormonal regulation by lamina terminalis. J Neuroendocrinol 2004; 16: 340-347.
  • Maurer JA, Wray S. Luteinizing hormone-releasing hormone (LHRH) neurons maintained in hypothalamic slice explant cultures exhibit a rapid LHRH mRNA turnover rate. J Neurosci 1997; 17: 9481-9491.
  • Kozniewska E, Romaniuk K. Vasopressin in vascular regulation and water homeostasis in the brain. J Physiol Pharmacol 2008; 59(Suppl. 8): 109-116.
  • Jennes L, Eyigor O, Janovick JA, Conn PM. Brain gonadotropin releasing hormone receptors: localization and regulation. Recent Prog Horm Res 1997; 52: 475-490.
  • Rispoli LA, Nett TM. Pituitary gonadotropin-releasing hormone (GnRH) receptor: structure, distribution and regulation of expression. Animal Reprod 2005; 88: 57-74.
  • Van der Beek EM, Wiegant VM, Van Oudheusden HJ, Van der Donk HA, Van den Hurk R, Buijs RM. Synaptic contacts between gonadotropin-releasing hormone-containing fibers and neurons in the suprachiasmatic nucleus and perichiasmatic area: an anatomical substrate for feedback regulation? Brain Res 1997; 755: 101-111.
  • Hermes ML, Coderre EM, Buijs RM, Renaud LP. GABA and glutamate mediate rapid neurotransmission from suprachiasmatic nucleus to hypothalamic paraventricular nucleus in rat. J Physiol 1996; 496: 749-757.
  • Cui LN, Saeb-Parsy K, Dyball RE. Neurons in the supraoptic nucleus of the rat are regulated by a projection from the suprachiasmatic nucleus. J Physiol 1997; 502: 149-159.
  • Kadar T, Telegdy G, Schally AV. Behavioral effects of centrally administered LH-RH agonist in rats. Physiol Behav 1992; 51: 601-605.
  • Naor Z, Jabbour HN, Naidich M, et al. Reciprocal cross talk between gonadotropin-releasing hormone (GnRH) and prostaglandin receptors regulates GnRH receptor expression and differential gonadotropin secretion. Mol Endocrinol 2007; 21: 524-537.
  • Mitchell V, Loyens A, Spergel DJ, et al. A confocal microscopic study of gonadotropin-releasing hormone (GnRH) neuron inputs to dopaminergic neurons containing estrogen receptor alpha in the arcuate nucleus of GnRH-green fluorescent protein transgenic mice. Neuroendocrinology 2003; 77: 198-207.
  • Moenter SM, DeFazio A, Pitts GR, Nunemaker CS. Mechanisms underlying episodic gonadotropin-releasing hormone secretion. Front Neuroendocrinol 2003; 24: 79-93.
  • Chen L, Sakai T, Sakamoto S, Kato M, Inoue K. Direct evidence of gonadotropin-releasing hormone (GnRH)-stimulated nitric oxide production in the LbT-2 clonal gonadotropes. Pituitary 1999; 2: 191-196.
  • Sladek CD, Swenson KL, Kapoor R, Sidorowicz H. The role of steroid hormones in the regulation of vasopressin and oxytocin release and mRNA expression in hypothalamo-neurohypophysial explants from the rat. Exp Physiol 2000; 858: 171S-177S.
  • Dhandapani KM, Mahesh VB, Brann DW. Astrocytes and brain function: implication for reproduction. Exp Biol Med 2003; 228: 253-260.
  • Micevych P, Sinchak K. Synthesis and function of hypothalamic neuroprogesterone in reproduction. Endocrinology 2008; 149: 2739-2742.
  • Dayanithi G, Sabatier N, Widmer H. Intracellular calcium signalling in magnocellular neurones of the rat supraoptic nucleus: understanding the autoregulatory mechanisms. Exp Physiol 2000; 858: 75S-84S.
  • Dayanithi G, Vireo C, Shibuya I. The role of calcium in the action and release of vasopressin and oxytocin from CNS neurones/terminals to the heart. J Physiol Pharmacol 2008; 59(Suppl. 8): 7-26.
  • Hrabovszky E, Kallo I, Steinhauser A, et al. Estrogen receptor-b in oxytocin and vasopressin neurons of the rat and human hypothalamus: immunocytochemical and in situ hybridization studies. J Comp Neurol 2004; 473: 315-333.
  • Brailoiu E, Dun SL, Brailoiu GC, et al. Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. J Endocrinol 2007; 193: 311-321.
  • Morris JA, Jordan CL, Breedlove SM. Sexual differentiation of the vertebrate nervous system. Nat Neurosci 2004; 7: 1034-1039.
  • Yasin SA, Forsling ML. Mechanisms of melatonin inhibition of neurohypophysial hormone release from the rat hypothalamus in vitro. Brain Res Bull 1998; 45: 53-59.
  • Juszczak M, Stempniak B, Guzek JW. Melatonin, pinealectomy and release of neurohypophysial hormones: in vitro studies. J Pineal Res 1992; 12: 1-6.
  • Juszczak M, Debeljuk L, Bartke A, Stempniak B. Melatonin inhibits oxytocin and vasopressin release from the neurointermediate lobe of the hamster pituitary. Neuroreport 1995; 6: 2453-2456.
  • Vitte PA, Harthe C, Lestage P, Claustrat B, Bobillier P. Plasma, cerebrospinal fluid, and brain distribution of 14C-melatonin in rat: a biochemical and autoradiographic study. J Pineal Res 1988; 5: 437-453.
  • Bojanowska E, Forsling ML. The effect of melatonin on vasopressin secretion in vivo: interactions with acetylcholine and prostaglandins. Brain Res Bull 1997; 22: 457-461.
  • Forsling ML, Achaaban AR, Zhou Y. The effect of intracerebroventricular melatonin on vasopressin release in the conscious rat. J Endocrinol 1992; 135(Suppl): P47.
  • Dardente H, Klosen P, Pevet P, Masson-Pevet M. MT1 melatonin receptor mRNA expressing cells in pars tuberalis of the European hamster: effect of photoperiod. J Neuroendocrinol 2003; 15: 778-786.
  • Liu C, Weaver DR, Jin L, Chen LW. Molecular dissection of two distinct actions of melatonin on the suprachiasmaticus circadian clock. Neuron 1997; 19: 91-102.
  • Song CK, Bartness TJ, Petersen SL, Bittman EL. Co-expression of melatonin (MEL1a) receptor and arginine vasopressin mRNAs in the Siberian hamster suprachiasmatic nucleus. J Neuroendocrinol 2000; 12: 627-634.
  • Isobe Y, Torii T, Nishino H. Melatonin inhibits Arg-vasopressin release via MT2 receptor in the suprachiasmatic nucleus-slice culture of rats. Brain Res 2001; 889: 214-219.
  • Wu YH, Zhou JN, Balesar R, et al. Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: colocalization of MT1 with vasopressin, oxytocin, and corticotrophin-releasing hormone. J Comp Neurol 2006; 499: 897-910.
  • Van der Beek EM, Horvath TL, Wiegant VM, Van den Hurk R, Buijs RM. Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: combined tracing and light and electron microscopic immunocytochemical studies. J Comp Neurol 1997; 384: 569-579.
  • MacKenzie RS, Melan MA, Passey DK, Witt-Enderby PA. Dual coupling of MT1 and MT2 melatonin receptors to cyclic AMP and phosphoinositide signal transduction cascades and their regulation following melatonin exposure. Biochem Pharmacol 2002; 63: 587-595.
  • Vanecek J. Inhibitory effect of melatonin on GnRH-induced LH release. Rev Reprod 1999; 4: 67-72.
  • Wiesenberg I, Missbach M, Kahlen J-P, Schrader M, Carlberg C. Transcriptional activation of the nuclear receptor RZRa by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand. Nucleic Acids Res 1995; 23: 327-333.
  • Kaewsuk S, Sae-ung K, Phansuwan-Pujito P, Govitrapong P. Melatonin attenuates methamphetamine-induced reduction of tyrosine hydroxylase, synaptophysin and growth-associated protein-43 levels in the neonatal rat brain. Neurochem Int 2009; 55: 397-405.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ea23f22e-8207-440f-8d31-22c38e90a232
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.