PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 14 | 2 |

Tytuł artykułu

The ceramide structure of GM1 ganglioside differently affects its recovery in low-density membrane fractions prepared from HL-60 cells with or without triton-X-100

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Gangliosides are characteristically enriched in various membrane domains that can be isolated as low density membrane fraction insoluble in detergents (detergent-resistant membranes, DRMs) or obtained after homogenization and sonication in 0.5 M sodium carbonate (low-density membranes, LDMs). We assessed the effect of the ceramide structure of four [3H]-labeled GM1 ganglioside molecular species (GM1s) taken up by HL-60 cells on their occurrence in LDMs, and compared it with our previous observations for DRMs. All GM1s contained C18 sphingosine, which was acetylated in GM1(18:1/2) or acylated with C14, C18 or C18:1 fatty acids (Fas)

Wydawca

-

Rocznik

Tom

14

Numer

2

Opis fizyczny

p.175-189,fig.,ref.

Twórcy

  • Medical Centre of Postgraduate Education, Marymoncka 99, 01-813 Warsaw, Poland
autor
autor
autor
autor

Bibliografia

  • 1. Hakomori, S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu. Rev. Biochem. 50 (1981) 733-764.
  • 2. Wiegandt, H. Gangliosides. In: New Comprehensive Biochemistry (Wiegandt, H. Ed.) Elsevier, Amsterdam, Vol. 10, 1985, 199-260.
  • 3. Degroote, S., Wolthoorn, J. and van Meer, G. The cell biology of glycosphingolipids. Semin. Cell Develop. Biol. 15 (2004) 375-387.
  • 4. Spiegel, S., Kassis, S., Wilchek, M. and Fishman, P.H. Direct visualization of redistribution and capping of fluorescent gangliosides on lymphocytes. J. Cell Biol. 99 (1984) 1575-1581.
  • 5. Fujita, A., Cheng, J., Hirakawa, M., Furukawa, K., Kusunoki, S. and Fujimoto, T. Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol. Biol. Cell 18 (2007) 2112-2122.
  • 6. Thorne, R.F., Mhaidat, N.M., Ralston, K.J. and Burns, G.F. Shed gangliosides provide detergent-independent evidence for Type-3 glycosynapse. Biochem. Biophys. Res. Commun. 356 (2007) 306-311.
  • 7. Iwabuchi, K., Handa, K. and Hakomori, S. Separation of "glycosphingolipid signaling domain" from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J. Biol. Chem. 273 (1998) 33766-33773.
  • 8. Hakomori, S. Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconjugate J. 17 (2000) 143-151.
  • 9. Hakomori, S. The glycosynapse. Proc. Nat. Acad. Sci. U.S.A. 99 (2002) 225-232.
  • 10. Simons, M., Friedrichson, T., Schultz, J.B., Pitto, M., Masserini, M. and Kurzhalia, T. Exogenous administration of gangliosides displaces GPIanchored proteins from lipid microdomains in living cells. Mol. Cell. Biol. 10 (1999) 3187-3193.
  • 11. Kim, H.Y., Park, S.J., Joe, E.H and Jou, I. Raft-mediated Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP-2) regulation in microglia. J. Biol. Chem. 281 (2006) 11872-11878.
  • 12. Kabayama, K., Sato, T., Saito, K., Loberto, N., Prinetti, A., Sonnino, S., Kinjo, M., Igarashi, Y. and Inokuchi, J. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc. Nat. Acad. Sci. U.S.A. 104 (2007) 13678-13683.
  • 13. Odintsova, E., Butters, T.D., Monti, E., Sprong, H., Van Meer, G. and Berditchevski, F. Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochem. J. 400 (2006) 315-325.
  • 14. Mitsuda, T., Furukawa, K., Fukumoto, S., Miyazaki, H., Urano, T. and Furukawa, K. Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J. Biol. Chem. 277 (2002) 11239-11246.
  • 15. Nishio, M., Fukumoto, S., Furukawa, K., Ichimura, A., Miyazaki, H., Kusunoki, S., Urano, T. and Furukawa, K. Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC18 cells. J. Biol. Chem. 279 (2004) 33368-33378.
  • 16. Panasiewicz, M., Domek, H., Hoser, G., Kawalec, M. and Pacuszka, T. Structure of the ceramide moiety of GM1 ganglioside determines its occurrence in different detergent-resistant membrane domains. Biochemistry 42 (2003) 6608-6619.
  • 17. Heerklotz, H. Triton promotes domain formation in lipid raft mixtures. Biophys. J. 83 (2002) 2693-2701.
  • 18. Schuck, S., Honsho, M., Ekroos, K., Shevchenko, S. and Simons, K. Resistance of cell membranes to different detergents. Proc. Nat. Acad. Sci. U.S.A. 100 (2003) 5795-5800.
  • 19. Shogomori, H. and Brown, D.A. Use of detergents to study membrane rafts: the good, the bad, and the ugly. Biol. Chem. 384 (2003) 1259-1263.
  • 20. Lichtenberg, D., Goñi, F.M. and Heerklotz, H. Detergent–resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30 (2005) 430-436.
  • 21. Song, K.S., Li S, Okamoto, T., Quilliam, L., Sargiacomo, M. and Lisanti, M.P. Co-purification and direct interaction of ras with caveolin, an integral membrane protein of caveolae microdomains. J. Biol. Chem. 271 (1996) 9690-9697.
  • 22. Saqr, H.E., Pearl, D.K. and Yates, A.J. A review and predictive models of ganglioside uptake by biological membranes. J. Neurochem. 61 (1993) 395- 411.
  • 23. Schwarzmann, G. Uptake and metabolism of exogenous glycosphingolipids by cultured cells. Semin. Cell Develop. Biol. 12 (2001) 163-171.
  • 24. Yanagida, M., Nakayama, H., Yoshizaki, F., Fujimura, T., Takamori, K., Ogawa, H. and Iwabuchi, K. Proteomic analysis of plasma membrane lipid rafts of HL-60 cells. Proteomics 7 (2007) 2398-2409.
  • 25. Sonnino, S., Chigorno, V. and Tettamanti, G. Preparation of radioactive gangliosides, 3 H or 14C isotopically labeled at oligosaccharide or ceramide moieties. Methods Enzymol. 311 (2000) 639- 656.
  • 26. Wilson, B.S., Steinberg, S.L., Liederman, K., Pfeiffer, J.R., Surviladze, Z., Zhang, J., Samelson, E., Yang, L., Kotula, P.G. and Oliver, J.M. Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol. Biol. Cell 15 (2004) 2580-2592.
  • 27. Ermini, L., Secciani, F., La Sala, G.B., Sabatini, L., Fineschi, D., Hale, G. and Rosami, F. Different glycoforms of the human GPI-anchored antygen CD52 associate differently with lipid microdomains in leukocytem and sperm membranes. Biochem. Biophys. Res. Commun. 338 (2007) 1275- 1283.
  • 28. Foster, L.J., de Hoog, C.L. and Mann, M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Nat. Acad. Sci. U.S.A. 100 (2003) 5813-5818.
  • 29. Pike, L. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid. Res. 47 (2006) 1597-1598.
  • 30. Brown, D. A. Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology 21 (2006) 430-439.
  • 31. Brügger, B., Glass, B., Haberkant, P., Leibrecht, I., Wieland, F.T. and Kräusslich, H.G. The HIV lipidome: a raft with an unusual composition. Proc. Nat. Acad. Sci. U.S.A. 103 (2006) 2641-2646.
  • 32. Fridriksson, E.K., Shipkova, P., Sheets, E.D, Holowka, D., Baird B. and McLafferty, F.W. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem highresolution mass spectrometry. Biochemistry 38 (1999) 8056-8063.
  • 33. Pitto, M., Parenti, M., Guzzi, F., Magni, F., Palestini, P., Ravasi, D. and Masserini, M. Palmitic is the main fatty acid carried by lipids of detergentresistant membrane fractions from neural and non-neural cells. Neurochem. Res. 27 (2002) 729-734.
  • 34. Rex, M., Elliot, M.H., Brush, S. and Anderson, R.E. Detailed characterization of the lipid composition of detergent-resistant membranes from photoreceptor rod outer segment membranes. Invest. Ophtalmol. Vis. Sci. 46 (2005) 1147-1154.
  • 35. Brown, D.A. and London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275 (2000) 17221-17224.
  • 36. Pike, L., Han, X., Chung, K.N. and Gross, R.W. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41 (2002) 2075-2088.
  • 37. Kim, K.B., Kim, S.I., Choo, H.J, Kim, J.H. and Ko, Y.G. Two-dimensional electrophoretic analysis reveals that lipid rafts are intact at physiological temperature. Proteomics 4 (2004) 3527-3535.
  • 38. Babiychuk, E.B. and Draeger, A. Biochemical characterization of detergentresistant membranes: a systematic approach. Biochem. J. 397 (2006) 407-416.
  • 39. Palestini, P., Alietta, M., Sonnino, S., Tettamanti, G., Thompson, T.E. and Tillack, T.W. Gel phase preference of ganglioside GM1 at low concentration in two-component, two-phase phosphatidylcholine bilayers depends upon the ceramide moiety. Biochim. Biophys. Acta 1235 (1995) 221-230.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-e9988d47-a155-4755-aae0-96e7f8e9c568
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.