PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

1999 | 22 |

Tytuł artykułu

Energetyczna i geometryczna powierzchni fazy stalej materialu glebowego

Treść / Zawartość

Warianty tytułu

EN
Energetical and geometrical surface heterogeneity of soil solid phase

Języki publikacji

PL

Abstrakty

PL
Niejednorodność powierzchni dotyczy nie tylko gleby jako całości, ale również poszczególnych składników fazy stałej gleby. Niejednorodność energetyczna wyrażana poprzez funkcję rozkładu centrów adsorpcyjnych lub średnią energię adsorpcji, jak również i niejednorodność geometryczna wyrażana wielkością powierzchniowego bądź objętościowego wymiaru fraktalnego, ma istotny wpływ nie tylko na przebieg szeregu procesów zachodzących w glebie, lecz może też być jedną z właściwości charakteryzujących materiał glebowy. W pracy dokonano krótkiego przeglądu publikacji z ostatnich lat, dotyczących wyznaczania niejednorodności geometrycznej i energetycznej materiału glebowego. Teoretyczne metody opisu niejednorodności powierzchni materiału glebowego są ostatnio coraz częściej stosowane do opisu zmian gleby pod wpływem zabiegów uprawowych, procesów degradacji, zmian ilościowych materii organicznej, odczynu i składników mineralnych, wyjaśnienia mechanizmu adsorpcji jonów i gazów, struktury i degradacji gleby oraz retencji wody. Analizę fraktalną stosowano nic tylko do charakteryzowania geometrii materiałów, ale także do opisu zmienności przestrzennej niektórych właściwości gleby.
EN
Surface heterogeneity concerns not only a soil in its entirety, but also particular components of solid soil phase.Energetical heterogeneity, decribed by a distribution function giving the amount of adsorbing centers versus their energy, and consequently by the value of the average adsorption energy, as well as geometrical (or structural heterogeneity) decribed by surface or by mass fractal dimension, not only influence essentially several physico-chemical processes occurring in soils, but they can also be used as parameters characterizing soil materials. This work is concerned with a brief review of some recent publications concerning the problems of evaluation of the energetic and geometric heterogeneities of soil materials. Numerous theoretical methods of description of surface heterogeneity of soils are now frequently used to interpret soils' changeability due to their cultivation, due to their degradation and to describe soils transformations caused by the changes in the composition of organic matter, pH, content of minerals, as well as to explain mechanism of adsorption of vapors and ionic solutions by soils, degradation of soils and water retention in soils. Fractal concepts and fractal analysis have been applied not only to characterize soil materials, but also to describe spatial variability of some soil properties.

Wydawca

-

Czasopismo

Rocznik

Tom

22

Opis fizyczny

s.173-185,bibliogr.

Twórcy

autor
  • Instytut Agrofizyki PAN, ul.Doswiadczalna 4, 20-290 Lublin

Bibliografia

  • 1. Anderson A. N., McBratney A. B., Crawford J. W.: Applications of Fractals to Soil Science, Advances in Agronomy, 63, 2-76, 1998 (Ed. D. L. Sparks, Acadcmic Press)
  • 2. Armstrong A. C.: On the fractal dimensions of some transient soil properties. J. Soil Sci., 37, 641- 652, 1986.
  • 3. Avnir D.: The Fractal Approach to Heterogeneous Chemistry. Surfaces, Colloids, Polymers. J.Wiley&Sons, Chichester, 1989.
  • 4. Avnir D,, Farin D., Pfeifer P.: A disscusion ofsome aspects of surface fractality and its determination. New J. Chem., 16,439-449, 1992.
  • 5. Avnir, D., and Jaroniec, M.: An isotherm equation for adsorption on fractal surfaces of heterogeneous porous material. Eangmuir 5,1431-1433, 1989.
  • 6. Balard H., Saada A„ Papirer E., Siffert B.: Energetic surface heterogeneity of illites and kaolinites. Langmuir, 13, 1256-1269, 1997.
  • 7. Bartoli F., Burtin G,, Royer J, J,, Gury M., Gomendy V., Pbylippy R., Leviandier Th,, Gafrej R.: Spatial variability of topsoil characteristics within one silty soil type. Effects on clay migration. Geoderma, 68, 279-300, 1995.
  • 8. Bartoli F., Philippy R., Burtin G.: Poorly ordered hydrous Fe oxides, colloidal dispersion and aggregation. II. Modification of silty soil aggregation with Fe(II) poly cations and model humic macromolecules, J. Soil Sci., 43, 59-75, 1992.
  • 9.Bartoli F., Pliilippy R, Burtia G.: Influence of organic matter aggregation in OxisoLs rich in gibbsitc or in goethite . I. Structures; the fractal approach. Geoderma, 54, 231-257. 1492.
  • 10.Bartoli F., Philipp R., Doirissc M, Niquet S., Dubuit M.i Structure and self-similarity in silty and sandy soils: the fractal approach, J. Soil Sci., 42, 167-185, 1991.
  • 11.Bavaye P., Parlange J.V., Stewart B. A. (Ed.): Fractals in Soil Science. CRC Press. 1998.
  • 12.Bunde A. (Ed.): Fractals and Disorder. North-Holland 1992.
  • 13.Burrough P. A,: Fractal dimension of landscapes and other environmental data. Nature, 294. 240- 242, 1981,
  • 14.Burrough P. A,: Multiscalc sources of spatial variability in soil. I. The application of fractal concepts lo tested levels of soil variation. J. Soil Sei., 34, 577-626, 1983.
  • 15.Burrough P, A,: Soil variability: a late 20th century viev. Soils and Fertilizers, 56, 529-554. 1993.
  • 16.Culling W, E. H.: Highly erratic spatial variability of soil-pll on Iping Common, West Sussex. Catena, 13, 81-89, 1986.
  • 17.Feder J.: Fractals. Plenum Press, N.Y. and London, 1988,
  • 18.Feder J., Aharony A. (Eds.): Fractals in Physics. North-Holland, Elsevier, 1990.
  • 19.Giona M., Giustiniani M., Ludlow D. K.: Influence of geometrie and energetic heterogeneity on adsorption isotherms. Fractals, 3, 235-250, 1995.
  • 20.Gimenez D., Al1maras R. R., Huggins D. R., Naícr E. A.: Prediction of the hydraulic conductivity-porosity dependence. Soil Sci. Soc. Am. J., 61, 1285-1292, 1997.
  • 21. Gleboznawstwo. Praca zbiorowa. (Pod red. B. Dobrzańskiego i S. Zawadzkiego), Wyd. III poprawione, PWRiL, Warszawa 1995.
  • 22. Haggerty R,, Gorelick S. M.: Modeling mass transfer processes in soil column with pore-scale heterogeneity. Soil Sci. Soc. Am. J., 62, 62-74, 1998,
  • 23. Hill T. L.: An introduction to ststistical 1 hermo dyn am i sc. Addison-Wesley Pub. Co., Reading, Mass., London, I960,
  • 24. Jaroniec ML: Physical adsorption on heterogeneous solids. Adv. Coll. Inter. Sci,, 18, 149-225, 1983,
  • 25. Jaroniec M., Braeuer P.: Recent progress in determination of energetie heterogeneity of solids from adsorption data Surface Scicncc Peports, 6, 65-117, 1986.
  • 26. Jaroniec M, Madey J.: Physical Adsorption on Heterogeneous Surfaces, Elsevier, Amsterdam, 1988.
  • 27. Jaroniec, M.: Evaluation of the fractal dimension from a single adsorption isotherm. Langmuir, 11, 2316-2317, 1995.
  • 28. Jaroniec M., Kruk M., Olivier J,: Fractal analysis of composite adsorption isotherms obtained by using density functional theory data for argon in slitlike pores. Langmuir, 13, 103 I -1035, 1997.
  • 29. Jarząbski, A.B., Lorenc, J., and Pająk, L.: Surface fractal characteristics of silica aerogels. Langmuir 13, 1280-1285, 1997.
  • 30. Józefaciuk G.: Zmiany właściwości powierzchniowych gleb i minerałów ilastych w procesach zakwaszania i alkalizacji. Badania modelowe. Acta Agrophysica 15, 1998.
  • 31. Józefaciuk G., Sokołowska Z., Hajnos M., Hoffmann C., Renger M.: Effect of leaching of DOC on water adsorption properties of sandy soil. Geodcrma, 74, 125-137, 1996.
  • 32. Józefaciuk C., Sokołowska Z., Sokołowski S., Alekseev A.O., Alekseeva T.P.: Changes of mineralogical and surface properties ofwaterdispersible clay alter acid treatment of soils. Clay Minerals 30, 149-155, 1995.
  • 33.Kozak E.: Aspekty metodyczne wyznaczania rozkładu rozmiarów porów i wymiaru fraktalnego materiałów glebowych. Praca doktorska, Instytut Agrofizyki PAN, Lublin. 1994.
  • 34.Kozak E., Pachepsky Y.A., Sokołowski S., Sokołowska Z., Stępniewski W.: A modified numberbased method for estimatig fragmentation fractal dimensions of soils. Soil Sci. Am. J., 60, 1291- 1297. 1996,
  • 35.Kozak E., Sokołowska Z., Sokołowski S., Wierzchoś J.: Surface fractal dimension of soil materials from pore size distribution data. 1, A comparison of two methods of determination. Polish J. Soil Sci,, 28,77-85, 1995.
  • 36.Kravchenko A., Zhang R,: Estimating the soil water retention from particle-size distributions: a fractal approach. Soil Sci., 163, 171-179, 1998.
  • 37.Kutarov V. V,, Kats B. M.: Determination of the fractal dimension of lon-exchangc fibers from adsorption data, Russ. J. Phys. Chem., 67, 1666-1668, 1993.
  • 38.Lipiec J,, Hutu no R,, Słowińska-Jurkiewicz A,: The fractal dimension of pore distribution patterns in variously-compacted soil. Soil & Tillage Res. 47, 61-66. 1998.
  • 39.Mamleetv W. S., Zolotareev P. P., Glagyszev P. P.: Neodnorodnost sorb en low: (fenomenologiczeskye modeli). Alma-Ata, Nauka, 1989,
  • 40.Mandelbrot B.: The fractal geometry of nature. Freeman, San Francisco, 1982.
  • 41.Neimark, A.V.: Determination of surface fractal dimension from the results of an adsorption experiment. Russ. J, Phys. Chem., 64, 1398-1403, 1990.
  • 42.Neimark A. V,: Calculating surfacc fractal dimensions of adsorbents. Ads, Sci. Tcchnol., 7, 210-219, 1990.
  • 43.Neimark A, V,: A new approach to determination of the surface fractal dimension of porous solids. Pbysica A, 191,258-262, 1992.
  • 44.Neimark A.V.: Fractal analysis of adsorption isotherms, Phys. Rev. B 50, 15435, 1994.
  • 45.Novak M. M. (Ed.): Fractals and Beyond: Complexities in the Science, World Sci. Pub. Co. Pie. Ltd., Singapore, New Jersey, London, 1 long Kong, 1998,
  • 46.Oesterberg R., Szajdak L., Mortensen K.: Temperature - dependent restructuring of fractal humic acids: a proton - dependent process. Environ.Inter., 20, 77-80, 1994.
  • 47.Pachepsky Y.A., Korsumskaja L. P., Hajnos M.: Fractal parameters of soil pore surface area under a developing crop. Fractals, 4,97-104, 1996.
  • 48.Pachepsky Y.A., Polubesova T.A., Hajnos M., Józefaciuk G., Sokołowska Z.: Parameters of surfacc heterogeneity from laboratory experiments on soil degradation. Soil Sci. Soc. Am. J.; 59, 410-417, 1995.
  • 49.Pachepsky Y.A., Polubesova T.A., Hajnos M,, Sokołowska Z,, Józefaciuk G.: Fractal parame ters of pore surface area as inluenced by simulated soil degradation. Soil Sci. Soc. Am, J., 59, 68- 75, 1995.
  • 50.Patrykiejew A., Sokołowski S., Sokołowska Z.: On the nonidcality effects in adsorption of anions in soils. Inter. Agrophys., 3, 165-176, 1987.
  • 51.Patrykiejew A., Sokołowski S., Sokołowska Z.: On the kinetics of phosphate sorption by soils. Inter Agrophys., 5, 13-25, 1989.
  • 52.Perfect E., Groeneveit P. H., Kay B. D., Grant C. D.: Spatial variability of soil penetrometer measurements at the mesoscopic scale. Soil Till. Res., 16,257-291, 1990.
  • 53.Perfect E., Kay B. D.: Application of fractals in soil and tillage research: a review. Soil & Tillage Res, 36, 1-20, 1995.
  • 54.Pfeifer P.: Fractal dimensions as working tool for surface - roughness problems. Appl. Surf. Sci., 18, 146-164, 1984,
  • 55.Pfeifer P., Avnir D,: Chemistry in nonintiger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. J. Chem. Phys,, 79, 3558-3565, 1983.
  • 56.Pfeifer P., Cole M, W.: Fractals in surface science: scattering and thermodynamics of adsorbed films. New. J. Chem. 14, 221-232, 1990.
  • 57.Polubesova T.A., Pacbepsky Y.A., Hajnos M,, Józefaciuk C., Sokołowska Z.: Comparison of three techniques to assess surface heterogeneity of solids in soils. Inter. Agrophys. 11, 189-198, 1977.
  • 58.Rasiah V., Alymore A. G.: Characterizing the changes in soil porosity by computed tomography and fractal dimension. Soil Sci,, 163,203-211, 1998,
  • 59. Rice J. A., Lin J. S.: Fractal dimension of humic materials. 6th Inter. Meeting IHSS, Abstracts of invited and volunteered papers, str. 44, 1992, (Ed, N. Senesi and T. M. Miano, Bari, Italy)
  • 60. van Riemsdijk W, H, Koopal L. K., de Wit J, C, M.; Heterogeneity and electrolyte adsorption: intrinsic and electrostatic effects. W: Soil Chemistry and Soil Physics. Netherlands J, Agric, Sci., 35, 241-257, 1987.
  • 61. Rieu M,, S posit o G.: Fractal fragmentation, soil porosity, and soil water properties. Soil Sci. Soc. Am. J., 55, 1231-1244, 1991.
  • 62. Ross R, Olivier J. P.: On physical adsorption, Interscienee, New York, 1964.
  • 63. Rudziński W,, Everett D.: Adsorption of Gases on Heterogeneous Surfaces, Academic Press, 1992.
  • 64. Senesi N.: The fractal approach to the study of humic substances. 6th Inter. Meeting IHSS, Abstracts of invited and volunteered papers, str. 39-39a, 1992. (Ed. N. Sencsi and T. M. Miano. Bari, Italy)
  • 65. Senesi N., Rizzi F, R., DeQino P., Acquafredda P., Maggipinto G., Lorusso G. F.: The fractal morfology of soil humic acids. Transactions, V. 3b, 81-82, 15th World Congr. Soil Sci., Acapulco, Mexico, 1994.
  • 66. Sokołowska Z,: Rola niejednorodności powierzchni w procesach adsorpcji nachodzących na glebach. Problemy Agrofizyki 58, 1989.
  • 67. Sokołowska Z.: On the role of energetic and geometrie heterogeneity in sorption of water vapour by soils. Geoderma, 45,251 -265, 1989.
  • 68. Sokołowska Z,, Hajnos M., Borówko M., Sokołowski S.: Adsorption of nitrogen on thermally treated peal soils: the role of energetic and geometric heterogeneity. J. Coll. Inter. Sci., 219, 1-10, 1999,
  • 69. Sokołowska Z., Hajnos M., Józefaciuk G„ Hoffmann C., Rengcr M.: Influence of humic acid on water adsorption characteristics of kaolin and quartz. Z. Pflan, Bodenk., 160,327-331, 1997.
  • 70. Sokołowska Z., Hajnos M., Sokołowski S.: Effect of leaching of dissolved organic carbon on fractal dimension of soils. 231-239, W: Fractals and Beyond: Complexities in the Science. Novak M. M. (Ed.), World Sci. Pub. Co. Pte. Ltd., Singapore, New Jersey, London, Hong Kong, 1998.
  • 71. Sokołowska Z., Józefaciuk G., Sokołowski S., Renger M., Wilczyński A.: Water vapour adsorption as related to liming of acidic sandy forest soils. Z. Pflan. u. Bodenk., 156, 495-499, 1993.
  • 72.Sokołowska Z., Józefaciuk G., Sokołowski S., Urumova-Peszeva A,: Adsorption of water vapour on soils: The influence of organic matter and the components of ¡ran and aluminum on encrgctic heterogeneity of soil samples. Clays a. Clay Minerals, 41,346-352, 1993.
  • 73.Sokołowska Z., Patrykiejew A., Sokołowski S.: Equation for describing anion sorption in soils with their heterogeneous surfaces. Geodenna. 41, 327-336, 1988.
  • 74.Sokołowska Z,, Sokołowski S.: Teorie fraktalne adsorpcji. Problemy Agrofizyki 55, 1988.
  • 75.Sokołowska Z., Sokołowski S.: Water sorption in soils: The role of energetic and geometric heterogeneity. Inter. Agrophys., 5,247-254, 1989.
  • 76.Sokołowska Z,, Sokołowski S.: Influence of humic acid on surfacc fractal dimension of kaolin: analysis of mercury porosimetry and water adsorption data. Geodenna 88, 233-249,1999.
  • 77.Sokołowska Z., Sokołowski S., Stawiński J.: Adsorption of water vapour on momtmorilionitc saturated one- and bivalent cations. Z. Probl. Postęp, Nauk Roln., 398, 143-151, 1990.
  • 78.Sokołowska Z,, Stawiński J., Patrykiejew A., Sokołowski S.: A note on fractal analysis of adsorption process by soils and soil minerals. Inter. Agrophys., 5, 3-12, 1989.
  • 79.Sokołowska Z., Stawiński J., Sokołowski S.: Surface heterogeneity cffccts in water vapour adorption on clay minerals. Inter. Agrophys., 6, 161-166, 1992.
  • 80.Sokołowska Z., Szczypa J.: Adsorption isotherms for weak acid anions in soils. Geoderma, 24, 349-361, 1980.
  • 81.Steele W. A.: The interation of gases with solid surfaces. Pergamon Press, Oxford, 1974.
  • 82.Yin, Y.: Adsorption isotherm on fractally porous material, Langmuir 7, 216-217, 1991.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-e87b4eb5-d1d4-4390-b5a5-fcf0c93606c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.