PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 05 | 3 |

Tytuł artykułu

The intracellular fate of non-viral DNA carriers

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Rapid progress in molecular biology and genetic engineering techniques has made the induction of cell behavior modifications by altering genetic material possible. This allows us to think about the medical application of gene therapy as an alternative to classical pharmacology and as a means of introducing a new approach to treating hereditary diseases. The major obstacle that prevents the application of this method in clinical practice is the difficulty of delivering genetic material to its destination. The fragile DNA molecule (very unstable in in vivo) requires the assistance of supramolecular structures in order to ensure its extended lifetime in circulation. A number of DNA delivery methods have been considered. One of them, a viral carrier, has been extensively studied as a potential candidate for this purpose. Unfortunately, a number of serious problems exist associated with this approach. The risk of accidental infection has not been eliminated and virus presentation causes the immune system to activate. Transfection efficiency achieved with viral vectors is superior to that of other methods, but safety concerns and financial considerations have stimulated studies aimed at the development of non-viral DNA carriers. At present, the transfection efficiency of such carriers is very low. This paper discusses problems encountered when developing a stable and efficient lipid-DNA aggregate, capable of delivering genetic material into the targeted cell nucleus. Discussion is limited to aggregate interaction with the cellular plasma membrane and its fate in the cytosol.

Wydawca

-

Rocznik

Tom

05

Numer

3

Opis fizyczny

p.295-313,fig.

Twórcy

autor
  • Wroclaw University of Technology, Wyb.Wyspianskiego 27, 50-370 Wroclaw, Poland

Bibliografia

  • 1. Romano, G., Pacilio, C. and Giordano, A. Gene transfer technology in therapy: current applications and future goals. Stem Cells 17 (1999) 191- 202.
  • 2. Felgner, P. L. and Ringold, G. M. Cationic liposome-mediated transfection. Nature 337 (1989) 387-389.
  • 3. Scherman, D., Bessodes, M., Cameron, B., herscovici, J., Hofland, H., Pitard, B., Soubrier, F., Wils, P. and Crazet, J. Application of lipids and plasmid design for gene delivery to mammalian cells. Curr. Opin. Biotech. 9 (1998) 480-485.
  • 4. Garnett, M. C. Gene-delivery systems using catioic polymers. Crit. Rev. Therap. Drug Carrier Syst. 16 (1999) 147-207.
  • 5. Viola, A. and Lanzavecchia, A. T-cell activation and the dynamic world of rafts. APMIS 107 (1999) 615-623.
  • 6. Van-Klompenburg, W., Nielsson, I., von-Heijne, G. and de-Kruiff, B. Anioic phospholipids are determinants of membrane protein topology. EMBO J. 16 (1997) 4261-4266.
  • 7. Zwaal, R. F. A. and Schroit, A. J. Pathophysiologic implications of membrane phospholipid asymmetry in blod cells. Blood 89 (1997) 1121- 1132.
  • 8. Edidin, M. Lipid microdomains in cell surface membranes. Curr. Opin. Struct. Biol. 7 (1997) 528-532.
  • 9. Kusumi, A. and Sako, Y. Cell surface organization by the membrane skeleton. Curr. Opin. Cell. Biol. 8 (1996) 566-574.
  • 10. Schmid, S. L. and Damke, H. Coated vesicles: a diversity of form and function. FASEB J. 9 (1995) 1445-1453.
  • 11. M. Vance, J. E. and Shiao, Y. J. Intracellular trafficking of phospholipids: import of phosphatidylserine into mitochondria. Anticancer Res. 16 (1996) 1333-1340.
  • 12. Sandhoff, K. and Kolter, T. Topology of glycosphingolipid degradation. Trends. Cell. Biol. 6 (1996) 98-103.
  • 13. Langner, M. and Kubica, K. The electrostatics of lipid surfaces. Chem. Phys. Lipids 101 (1999) 3-35.
  • 14. Kinnunen, P. K. J. On the principle of functional ordering in biological membranes. Chem Phys Lipids 57 (1991) 375-399.
  • 15. Hoekstra, D., Zegers, M. M. P. and van Ijzendoom, S. C. D. Membrane flow, lipid sorting and cell polarity in HepG2 cells: role of a subapical compartment. Biochem. Soci. Trans. 27 (1999) 422-428.
  • 16. Kobayashi, T., Stang, E., Fang, K. S., de Moeloose P., Parton, R. G. and Gruenberg, J. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392 (1998) 193-197.
  • 17. Slotte, J. P. Sphingomyelin-cholesterol interactions in biological and model membranes. Chem. Phys. Lipids 102 (1999) 13-27.
  • 18. Cotten, M. and Saltik, M. Intracellular delivery of lipopolysaccharide during DNA transfection activates a lipid A - dependent cell death response that can be prevented by polymyxin B. Hum. Gene Ther. 8 (1997) 555-561.
  • 19. Miller, K. J. and Das, S. K. Antisense oligonucleotides: strategies for delivery. PSTT l (1998) 377-386.
  • 20. Urmoneit, B., Turner, J. and Dyrks, T. Cationic lipids (lipofectamine) and disturbance of cellular cholesterol and sphingomyelin distribution modulates gamma-secretase activity within amyloid precursos protein in vitro. Prostaglandins Other Lipid Mediators 55 (1998) 331-343.
  • 21. Maus, U., Rosseau, S., Mandrakas, N., Schlingensiepen, R., Maus, R., Muth, H., Grimminger, F., Seeger, W. and Lohmeyer, J. Cationic lipids employed for antisense oligodeoxynucleotide transport may inhibit vascular cell adhesion molecule-1 expression in human endothelial cells: a word of caution. Antisense Nuc. Acid. Drug Develop. 9 (1999) 71-80.
  • 22. Rouzina, I. and Bloomfield, V. A. DNA bending by small, mobile multivalent cations. Biophys. J. 74 (1998) 3152-3164.
  • 23. Bloomfield, V. A. DNA condensation by multivalent cations. Biopolymers 44 (1997) 269-282.
  • 24. Obika, S., Yu, W., Shimoyama, A., Uneda, T., Miyashita, K. and Imanishi, T. D. T. A symmetrical and biodegradable cationic lipid. Synthesis and application for efficient gene transfection. Bioorganic. Med. Chem. Lett. 7 (1997) 1817-1820.
  • 25. Paukku, T., Lauraeus, S., Huhtaniemi, I. and Kinnunen, P. K. J. Novel cationic liposomes for DNA-transfection with high afficiency and low toxicity. Chem. Phys. Lipids 87 (1997) 23-29.
  • 26. Wang, J., Guo, X., Barron, L. and Schoka, Jr. F. C. S. Synthesis and characterization of long chain alkyl acyl carnitine esters. Potentially biodegradable cationic lipids for use in gene delivery. J. Med. Chem. 41 (1998) 2207-2215.
  • 27. Byk, G., Dubertret, C., Escriou, V., Frederic, M., Jaslin, G., Rangara, R., Pitard, B., Crouzet, J., Wils, J., Schwartz, B. and Scherman, D. Synthesis, activity, and structure-activity relationship studies of novel cationic lipids for DNA transfer. J. Med. Chem. 41 (1998) 224-235.
  • 28. Byk, G. and Scherman, D. Novel cationic lipids for gene delivery and gene therapy. Exp. Opin. Ther. Patents 8 (1998) 1125-1141.
  • 29. Huang, C. Y., Uno, T., Murphy, J. E., Lee, S., Hamer, J. D., Escobedo J. A., Cohen, F. E., Radhakrishnan R., Dwarki, V. and Zuckermann, R. N. Lipitoids-novel cationic lipids for cellular delivery of plasmid DNA in vitro. Chem. Biol. 5 (1998) 345-354.
  • 30. Floch, V., Bolch, G. L., Gable-Guillaume, C., Le Bris, N., Yaouanc, J. J., des Abbayes, H., Cerec, C and Clement, J. C. Phosphonolipids as non-viral vectors for gene therapy. Eur. J. Med. Chem. 55 (1998) 923-934.
  • 31. Oudrhiri, N., Vigneron, J. P., Hauchecorne, M., Toury, R., Lemoine, A. I., Peuchmaur, M., Navarro, J., J M Lehn, J. M. and Lehn, P. Guanidinium- cholesterol cationic lipids: novel reagents for gene transfection and perspectives for gene therapy. Biogenic Amines 14 (1998) 537-552.
  • 32. Vigneron, J-P., Oudrhiri, N., Fauquet, M., Vergely, 1., Bradley, J. C., Basseville, M., Lehn, P. and Lehn J. M. Guanidinium-cholesterol cationic lipids: efficient vectors for the transfection of eukariotic cells. Proc. Natl. Acad. Sci. USA 93 (1996) 9682-9686.
  • 33. Erbacher, P., Zou, S., Bettinger, T., Steffan, A. and Remy, J. Chitosan- based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm. Res. 15 (1998) 1332-1339.
  • 34. Toth, I., Sakthivel, T., Wilderspin, A. F., Bayele, H., O'Donnell, M., Perry, D. J., Pasi, K. J., Lee, C. A. and Florence, A. T. Novel cationic lipidc peptide dendrimer vectors in vitro gene delivery. STP Pharma. Sci. 9 (1999) 93-99.
  • 35. Plank, C., Tang, M. X., Wolfe, A. R. and Szoka Jr., F. C. Branched cationic peptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. Hum. Gene Ther. 10 (1999) 319-332.
  • 36. Turunen, M. P., Hiltunen, M. O., Ruponen, M., Virkamaki, L., Szoka, F. C., Urtti, A., and Yla-Herttuala, S. Efficient adventital gene delivery to rabbit carotid artery with cationic polymer-plasmid complexes. Gene Ther. 6 (1999) 6-11.
  • 37. Katayose, S. and Kataoka, K. Water-soluble polyion complex associates of DNA and poly(ethyleneglycol)-poly(l-lysine) block copolymer. Bioconjugate Chem. 8 (1997) 702-707.
  • 38. Katayose, S. and Kataoka, K. Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)-poly)L-lysine) block copolymer. J. Pharm. Sci. 87 (1998) 160-163.
  • 39. Pitard, B., Aguerre, O., Ariau, M., A M Lachages, A. M., Bouknikachvilli, T., Byk. G., Dubertret, C., Daniel, J.C. Herviou, C., Scherman, D.,Mayaux, J. F. and Crouzet, J. Virus-sized self-assembling lamellar complexes between DNA and cationic micelles promote gene transfer. Proc. Natl. Acad. Sci. USA 94 (1997) 14412-14417.
  • 40. Jaaskelainen, I., Sternberg, B., Monkkonen, J. and Urtti, A. Physicochemical and morphological properties of complexes made of cationic liposomes and oligonucleotides. Int. J. Pharmaceut. 167 (1998) 191-203.
  • 41. Miller, A. D. Cationic liposomes for gene therapy. Angew. Chem. Int. Ed. 37 (1998) 1768-1785.
  • 42. Eastman, S. J., Siegel, C., Tousignant, J., Smith, A. E., Cheng, S. H. and Scheule, R. K. Biophysical characterization of cationic lipid:DNA complexes. Biochim. Biophys. Acta 1325 (1997) 41-62.
  • 43. Hui, S. W., Langner, M., Zhao, Y. L., Ross, P., Hurley, E. and Chan, K. The role of helper lipids in cationic liposome-mediated gene transfer. Biophys. J. 71 (1996) 590-599.
  • 44. Kichler, A., Zauner, W., Ogris, M. and Wagner, E. Influence of the DNA complexation medium on the transfection efficiency of lipospermine/DNA particles. Gene Therapy 5 (1998) 855-860.
  • 45. Gershon, H., Ghirlando, R., Guttman, S. B. and Minsky, A. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. Biochem. 32 (1993) 7143-7151.
  • 46. Zhang, Y. P., Reimer, D. L., Zhang, G., Lee, P. H. and Bally, M. B. Self-assembling DNA-lipid particles for gene transfer. Pharm. Res. 14 (1997) 190-196.
  • 47. Bally, M. B., Zhang, Y., Wong, F. M. P., Kong, S., Wasan, E. and Reimer, D. L. Lipid/DNA complexes as an intermediate in the preparation of particles for gene transfer: an alternative to cationic liposome/DNA aggregates. Adv. Drug Del. Rev. 24 (1997) 275-290.
  • 48. Mok, K. W. C. and Cullis, P. R. Structural and fusogenic properties of cationic liposomes in the presence of plasmid DNA. Biophys. J. 73 (1997) 2534-2545.
  • 49. Xu, Y., Hui, S. W., Fredeik, P. and Szoka-Jr, F. C. Physicochemical characterization and purification of cationic lipoplexes. Biophys. J. 77 (1999) 341-353.
  • 50. Koltover, I., Salditt, T. and Safinya, C. R. Phase diagram, stability, and overcharging of lamellar cationic lipid-DNA self-assembled complexes. Biophys. J. 77 (1999) 915-924.
  • 51. Litzinger, D. C. and Huang, L. Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. Biochim. Biophys. Acta 1113 (1992) 201-227.
  • 52. Fasbender, A., Marshall, J., Moninger, T. O., Grunst, T., Cheng, S. and Welsh, M. J. Effect of co-lipids in enhancing cationic lipid-mediated gene transfer in vitro and in vivo. Gene Ther. 4 (1997) 716-725.
  • 53. Liu, F., Yang, J. P., Huang, L. and Liu, D. New cationic lipid formulations for gene transfer. Pharm. Res. 13 (1996) 1856-1860.
  • 54. Liu, F., Qi, H. W., Huang, L. and Liu, D. Factors controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration. Gene Ther. 4 (1997) 517-523.
  • 55. Crook, K., Stevenson, B. J., Dubouchet, M. and Porteous, DJ. Inclusion of cholesterol in DOTAP transfection complexes increases the delivery of DNA to cells in vitro in the presence of serum. Gene Ther. 5 (1998) 137-143.
  • 56. Belting, M. and Petersson, P.. Intracellular accumulation of secreted proteoglycans inhibits cationic lipid-mediated gene transfer. J. Biol. Chem. 274 (1999) 19375-19382.
  • 57. Meyer, O., Kirpotin, D., Hong, K., Sternberg, B., Park, J. W., Woodle, M. C. and Papahadjopoulos, D. Cationic liposomes coated with polyethylene glycol as carriers for oligonucleotides. J. Biol. Chem. 273 (1998) 15621-15627.
  • 58. Hong, K., Zheng, W., Baker, A. and Papahadjopoulos, D. Stabilization of cationic liposome-plasmid DNA complexes by polyamines and polyethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. FEBS Lett. 400 (1997) 233-237.
  • 59. Yu, R. Z., Geary, R. S., Leeds, J. M., Watanabe, T., Fitchett, J. R., Matson, J. E., Mehta, R., Hardee, G. R., Templin, M. V., Huang, K., Newman, M. S., Quinn, Y., Uster, P., Zhu, G., Working, P. K., Homer, M., Nelson, J. and Levin, A. A. Pharmacokinetics and tissue distribution in monkeys of an antisense oligonucleotide inhibitor of Ha-Ras encapsulated in stealth liposomes. Pharmaceut. Tes. 16 (1999) 1309-1315.
  • 60. Lasic, D. D., Martin, F. J., Gabizon, A. and Huang, S. K, Papahadjopoulos D. Stericaly stabilized liposomes: a hypothesis on the molecular origin of the extended circulation time. Biochim. Biophys. Acta 1070 (1991) 187-192.
  • 61. Woodle, M. C. Surface-modified liposomes: assessment and
  • characterization for increased stability and prolonged blood circulation. Chem. Phys. Lipids 64 (1993) 249-262.
  • 62. Kronenwett, R., Steidl, U., Kirsch, M., Sczakiel, G. and Hass, R. Oligodeoxyribonucleotide uptake in primary human hematopietic cells is enhanced cationic lipids and depends on the hematopoietic cell subset. Blood 91(1998) 852-862.
  • 63. Mills, J. K. and Needham. D. Targeted drug delivery. Exp. Opin. Ther. Patents 9 (1999) 1499-1513.
  • 64. Kataoka, K. Targetable polymeric drugs. Controlled drug delivery: challenges and strategies. (Park K, ed.): Amer. Chem. Soc., Washington D. C., (1997) 49-71.
  • 65. Waelti, E. R. and Gluck, R. Delivery to cancer cells of antisense L-myc oligonucleotides incorporated in fusogenic, cationic-lipid-reconstituted influenza-virus envelopes (cationic virosomes). Int. J. Cancer. 77 (1998) 728-733.
  • 66. Watarai, S., Onuma, M., Aida, Y., Kakidani, H., Kodama, H. and Yasuda, T. Antitumor effect of diphtheria toxin A-chain gene-containing cationic liposomes conjugated with monoclonal antibody directed to tumor-associated antigen of bovine leukemia cells. Jpn. J. Cancer Res. 89 (1998) 1202-1211.
  • 67. Kawakami, S., Yamashita, F., Nishikawa, M., Takakura, Y. and Hashida, M. Asialoglycoprotein receptor-mediated gene transfer using novel galactosylated cationic lipsosomes. Biochim. Biophys. Res. Commun. 252 (1998) 78-83.
  • 68. You, J., Kamihira, M. and Iijima, S. Enhancement of transfection efficiency using ligand-modified lipid vesicles. J. Ferment. Bioengineer. 5 (1998) 525-528.
  • 69. Simoes, S., Slepushkin, V., Gaspar, R., Lima, M. P. and Duzgunes, N. Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferin or fusigenic peptides. Gene Ther. 5 (1998) 955- 964.
  • 70. Nantz, M. H., Li, L., Zhu, J., Aho-Sharon, K. L., Lim, D. and Erickson, K. L.. Inductive electron-withdrawal from ammonium ion headgroups of cationic lipids and the influence on DNA transfection. Biochim. Biophys. Acta 1394 (1998) 219-223.
  • 71. Basanez, G., Goni, FM. and Alonso, A. Poly(ethylene glycol)-lipid conjugates inhibit phospholipase C-induced lipid hydrolysis, liposome aggregation and fusion through independent mechanisms. FEBS Lett. 411 (1997) 281-286.
  • 72. Haberland, A., Knaus, T., Zaitsev, S. V., Stahn, R., Mistry, A. R., Coutelle, C., Haller, H. and Bottger, M. Calcium ions as efficient cofactor of polycation-mediated gene transfer. Biochim. Biophys. Acta 1445 (1999) 23-30.
  • 73. Zellmer, S., Cevc, G. and Risse, P. Temperature- and pH-controlled fusion between complex lipid membranes. Examples with the diacylphosphatidylcholine/fatty acid mixed liposomes. Biochim. Biophys. Acta 1196 (1994) 101-113.
  • 74. Pecheur, E. I., Sainte-Marie, J., Bienveniie, A. and Hoekstra, D. Peptides and membrane fusion: towards an understanding of the molecular mechanism of protein-induced fusion. Mem. Biol. 167 (1999) 1-17.
  • 75. Fugii, G. To fuse or not to fuse: the effects of electrostatic interactions, hydrophobic forces, and structural amphiphilicity on protein-mediated membrane destabilization. Adv. Drug. Deliv. Rev. 38 (1999) 257-277.
  • 76. Simoes, S., Siepushkin, V., Pretzer, E., Dazin, P., Gaspar, R., Pedroso de lima, M. C. and Duzgunes, N. Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides. J. Leukocyte Biol. 65 (1999) 270-279.
  • 77. Yonemitsu, Y., Kaneda, Y., Muraishi, A., Yoshizumi, T., Sugimachi, K. and Sueishi, K. HVJ (Sendai virus)-cationic liposomes: a novel and potentially effective liposome-mediated technique for gene transfer to the airway epithelium. Gene Ther. 4 (1997) 631-638.
  • 78. Wagner, E. Application of membrane-active peptides for nonviral gene delivery. Adv. Drug Deliv. Rev. 38 (1999) 279-289.
  • 79. Mitrakos, P. and Macdonald, P. M. DNA-induced lateral segregation of cationic amphiphiles in lipid bilayer membranes as detected via 2H NMR. Biochem. 35 (1996) 16714-16722.
  • 80. Glaser, M. Lipid domains in biological-membranes. Curr. Opin. Struct. Biol. 3 (1993) 475-481.
  • 81. Benachir, T., Monette, M., Grenier, J. and Laufer, M. Melittin-induced leakage from phosphatidylcholine vesicles is modulated by cholesterol: a property used for membrane targeting. Eur. Biophys. J. 25 (1997) 201 - 210.
  • 82. Scheiffele, P., Rietveld, A., Wilk, T. and Simons, K. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274 (1999) 2038-2044.
  • 83. Noguchi, A., Furuno, T., Kawaura, C. and Nakanishi, M. Membrane fusion plays an important role in gene transfection mediated by cationic liposomes. FEBS Lett. 433 (1998) 169-173.
  • 84. Warnock, D. E. and Schmid, S. L. Dynamin GTPase, a force-generating molecular switch. BioEssays 18 (1996) 885-893.
  • 85. Warnock, D. E., Terlecky, L. J. and Schmid, S. L. Dynamin GTPase is stimulated by crosslinking through the C-terminal proline-rich domain. EMBO J. 14 (1995) 1322-1328.
  • 86. Brisson, M., Tseng, M-C., Almonte, C., Watkins, S. and Huang, L. Subcellular trafficking of the cytoplasmic expression system. Hum. Gene Ther. 10 (1999) 2601-2613.
  • 87. Pless, D. D. and Wellner, R. B. In vitro fusion of endocytic vesicles: effects of reagents that alter endosomal pH. J. Cell. Biochem. 62 (1996) 27-39.
  • 88. Godbey, W. T., Wu, K. K., Hirasaki, G. J. and Mikos, A. G. Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther. 6 (1999) 1380-1388.
  • 89. Xu, Y. and Szoka, F. C. J. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochem. 35 (1996): 5616-5623.
  • 90. Zelphati, O. and Szoka, F. C. Intracellular distribution and mechanism of delivery of oligonucleotides mediated by cationic lipids. Pharm. Res. 13 (1996) 1367-1372.
  • 91. Stamatatos, L., Leventis, M. R., Zuckermann, J. and Silvius, J. R. Interaction of cationic lipid vesicles with negatively chargedphospholipid vesicles and biological membranes. Biochem. 27 (1988) 3917-3925.
  • 92. Baru, M., Nahum, O., Jaaro, H., Sha'anani, J. and Nur, I. Lysosome- disrupting peptide increases the efficiency of In-vivo gene transfer by liposome-encapsulated DNA. J. Drug Targeting 6 (1998) 191-199.
  • 93. Wattiaux, R., Jadot, M., Warnier-Pirotte, M. T. and Wattiaux-De-Coninck, S. Cationic lipids destabilize lysosomal membrane in vitro. FEBS Lett. 417 (1997) 199-202.
  • 94. Harvie, P., Wong, F. M. P. and Bally, M. B. Characterization of lipid DNA interactions. I. Destabilization of bound lipids and DNA Dissociation. Biophys. J. 75 (1998) 1040-1051.
  • 95. Boomer, J. A. and Thompson, D. H. Synthesis of acid-labile diplasmenyl lipids for drug and gene delivery applications. Chem. Phys. Lipids 99 (1999) 145-153.
  • 96. Gerasimov, O. V., Schwan, A. and Thompson, D. H. Acid-catalized plasmenylcholine hydrolysis and its effect on bilayer permeability: a quantitative study. Biochim. Biophys. Acta 1324 (1997) 200-214.
  • 97. Gerasimov, O. V., Boomer, J. A., Qualls, M. M. and Thompson, D. H. Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv. Drug Delivery Rev. 38 (1999) 317-338.
  • 98. Wrobel, I. and Collins, D. Fusion of cationic liposomes with mammalian cells accurs after endocytosis. Biochim. Biophys. Acta 1235 (1995) 296-304.
  • 99. Ramalho-Santos, J. and Pedroso-de-Lima, M. C. The influenza virus hempgglutinin: a model protein in the study of membrane fusion. Biochim. Biophys. Acta 1376 (1998) 147-154.
  • 100. Li, S., Rizzo, M. A., Bhattacharya, S. and Huang, L. Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene Ther. 5 (1998) 930-937.
  • 101. Capecchi, M. R. High efficiency transformation by direct microinjection of DNA into mammalian cells. Cell 22 (1980) 479-483.
  • 102. Lechardeur, D., Sohn, K. J., Haardt, M., Joshi, P. B., Monck, M., Graham, R. W., Beatty, B., Squire, J., O'Brodovich, H. and Lukacs, G. L. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 6 (1999) 482-497.
  • 103. Coonrod, A., Li, F. Q. and Horwitz, M. On the mechanism of DNA transfection: efficient gene transfer without viruses. Gene Ther. 4 (1997) 1313-1321.
  • 104. Friend, D. S., Papahadjopoulos, D. and Debs, R. J. Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim. Biophys. Acta 1278 (1996) 41-50.
  • 105. Godbey, W. T., Wu, K. K. and Mikos, A. G. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci. USA 96 (1999) 5177-5181.
  • 106. Reimer, D. L., Kong, S. and Bally, M. B. Analysis of cationic liposome-mediated interactions of plasmid DNA with murine and human melanoma cells in vitro. J. Biol. Chem. 272 (1997) 19480-19487.
  • 107. Subramanian, A., Ranganathan, P. and Diamond, S. L. Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nature Biotech. 17 (1999) 873-877.
  • 108. Ourlin, J. C., Vilarem, M. J., Daujat, M., Harricane, M. C., Domergue, J., Joyeux, H., Baulieux, J. and Maurel, P. Lipid-mediated transfection of normal adult human hepatocytes in primary culture. Analyt. Biochem. 247 (1997) 34-44.
  • 109. Mortimer, I., Tam, P., MacLachlan, I., Graham, R. W., Saravolac, E. G. and Joshi, P. B. Cationic lipid-mediated transfection of cells in culture requires mitotic activity. Gene Ther. 6 (1999) 403-411.
  • 110. Ropert, C., Mishal, Z., Rodrigues, J. M., Malvy, C. and Couvreur, P. Retrovirus budding may constitute a port of entry for drug carriers. Biochim. Biophys. Acta 1310 (1996) 53-59.
  • 111. Saeki, Y., Matsumoto, N., Nakano, Y., Mori, M., Avai, K. and Kaneda, Y. Development and characterization of cationic liposomes conjugated with HVJ (Sendai Virus): reciprocal effect of cationic lipid for in vivo and in vitro gene transfer. Hum. Gene Ther. 8 (1997) 2133-2141.
  • 112. Neri, L. M., Capitani, S., Borgatti, P. and Martelli, A. M. Lipid signaling and cell responses at the nuclear level. Histol. Histopathol. 14 (1999) 321-335.
  • 113. Mukherjee, S., Soe, T. T. and Maxfield, F. R. Endocytic sorting of lipid analogs differing solely in the chemistry of their hydrophobic tails. J. Cell. Biol. 144 (1999) 1271-1284.
  • 114. Hoekstra, D. and Kok, J. W. Trafficing of glycosphingolipids in eukaryotic cells: sorting and recycling of lipids. Biochim. Biophys. Acta 1113 (1992) 277-294.
  • 115. Somerharju, P., Virtanen, J. A. and Cheng, K. H. Lateral organization of membrane lipids. The superlattice view. Biochim. Biophys. Acta 1440 (1999) 32-48.
  • 116. Kanamaru, T., Takagi, T., Takakura, Y. and Hashida, M. Biological effects and cellular uptake of c-myx antisense oligonucleotides and their cationic liposome complexes. J. Drug Targeting 5 (1988) 235-246.
  • 117. Schughart, K., Bischoff, R., Ali-Hadji, D., Boussif, O., Perraud, F., Accart, N., Rasmussen, U. B., Pavirani, A., von-Rooijen, N. and Kolbe, H. V. J. Effect of liposome-encapsulated clodronate pretreatment on synthetic vector-mediated gene expression in mice. Gene Ther. 6 (1999) 448-453.
  • 118. Park, J. W., Hong, K., Kirpotin, D. B., Papahadjopoulos, D. and Benz, C. C. Immunoliposomes for cancer treatment. Adv. Pharmacol. 40 (1997) 399-435.
  • 119. Mahato, R. I., Takakura, Y. and Hashida, M. Development of targeted delivery systems for nucleic acid drug. J. Drug Targeting 4 (1997) 337-357.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-e7ca7ea9-d5c1-481f-9d63-290285a61437
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.