PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 45 | 3 |

Tytuł artykułu

Spatial organization of tubercles and terrace lines in Paradoxides forchhammeri - evidence of lateral inhibition

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Organizacja przestrzenna guzkow i linii pancerza trylobita Paradoxides forchhammeri swiadczy o inhibicji bocznej

Języki publikacji

EN

Abstrakty

EN
Spatial statistics on the positions of trilobite tubercles indicate the existence of a developmental spacing mechanism. Similar spacing between sensory bristles, due to lateral inhibition, is well known in insects, and the genetic basis for these patterns has been thoroughly studied. Tubercles (granules) in the Middle Cambrian trilobite Paradoxides forchhammeri are spaced out, but otherwise randomly positioned. Assuming that similar genetic principles are in operation for the positioning of peripheral neuronal elements in all arthropods, it can even be speculated that genes with functions similar to Delta, Notch, achaete and scute were active in trilobite cuticular patterning. Also, in P. forchhammeri, terrace lines (ridges) seem to display transitions into granulation, indicating that these two types of structure share an underlying pattern formation mechanism.
PL
Analiza statystyczna rozmieszczenia guzków trylobita świadczy o istnieniu mechanizmu rozwojowego odpowiadającego za ich układ. Znany jest mechanizm inhibicji bocznej u owadów, odpowiedzialny za podobne odstępy szczecinek czuciowych, poznano takie jego podłoże genetyczne. Guzki (granule) środkowokambryjskiego trylobita Paradoxides forchhammeri są rozmieszczone losowo, ale z zachowaniem podobnych odstępów. Zakładając, że rozmieszczenie obwodowych elementów nerwowych u wszystkich stawonogów opierało się na podobnym podłożu genetycznym, można pokusić się o przypuszczenie, że w ornamentacji pancerza trylobitów uczestniczyły geny o funkcjach zbliżonych do owadzich genów Delta, Notch, achaete i scute. U P. forchhammeri można takie zaobserwować przejście między liniarni tarasowymi (grzebieniami) a granulacją, co wskazywałoby na wspólny mechanizm determinacji tych struktur.

Wydawca

-

Rocznik

Tom

45

Numer

3

Opis fizyczny

s.251-270,rys.,fot.,bibliogr.

Twórcy

autor
  • Paleontological Museum, University of Oslo, Sars gt.1, 0562 Oslo, Norway

Bibliografia

  • Angelin, N.P. 1854. Palaeontologica Scandinavica. Pars 1. Crustacea Formationis Transitionis. Fasc 2. 92 pp. T.O. Weigel, Leipzig.
  • Artavanis-Tsakonas, S., Matsuno, K., & Fortini, M.E. 1995. Notch signaling. -Science 268, 225-232.
  • Bergström, J. & Levi-Setti, R. 1978. Phenotypic variation in the Middle Cambrian trilobite Paradoxides davidis Salter at Manuels, SE Newfoundland. - Geologica et Palaeontologica 12, 1-40.
  • Brown, D. & Rothery, P. 1993. Models in Biology: Mathematics, Statistics and Computing. 688 pp. John Wiley & Sons, New York.
  • Bruton, D.L. 1976. The trilobite genus Phillipsinella from the Ordovician of Scandinavia and Great Britain. - Palaeontology 19, 699-718.
  • Brogger, W.C. 1878. Om paradoxidesskifrene ved Krekling. - Nyt magazin for naturvidenskaberne 24, 18-88.
  • Claxton, J.H. 1963. The spatial relationships between skin follicles during their development in sheep. - Australian Journal of Biological Sciences 16, 695-708.
  • Claxton, J.H. 1974. Some quantitative features of Drosophila sternite bristle patterns. -Australian Journal of Biological Sciences 27, 533-543.
  • Collier, J.R, Monk, N.A.M., Maini, P.K., & Lewis, J.H. 1996. Pattern formation by lateral inhibition with feedback: A mathematical model of Delta-Notch intercellular signalling. -Journal of Theoretical Biology 183, 429-446.
  • Davis, J.C. 1986. Statistics and Data Analysis in Geology. 646 pp. John Wiley & Sons, New York.
  • Dussert, C., Rasigni, G., & Llebaria, A. 1988. Quantization of directional properties in biological structures using minimal spanning tree. -Journal of Theoretical Biology 135, 295-302.
  • Fletcher, C.A.J. 1991. Computational Techniques for Fluid Dynamics, Volume I, 2nd ed. 401 pp. Springer- Verlag, Berlin.
  • Fortey, R.A. 1986. The type species of the Ordovician trilobite Symphysurus; systematics, functional morphology and terrace ridges. - Palaeontologische Zeitschrrfi 60, 255-275.
  • González-Gaitán, M. & Jäckle, H. 1995. Invagination centers within the Drosophila stomatogastric nervous system anlage are positioned by Notch-mediated signaling which is spatially controlled through wingless. - Development 121, 2313-2325.
  • Hammer, Ø. 1998. Diffusion and direct signaling models are numerically equivalent. - Journal of Theoretical Biology 192, 129-130.
  • Hoffmann, R. & Jain, A.K. 1983. A test of randomness based on the minimal spanning tree. -Pattern Recognition Letters 1, 175-180.
  • Holder, N. & Glade, R. 1984. Skin glands in the axolotl: The creation and maintenance of a spacing pattern. -Journal of Embryology and Experimental Morphology 79, 97-112.
  • Höfer, T. & Maini, P.K. 1996. Turing patterns in fish skin? -Nature 380, 678.
  • Kondo, S. & Asai, R. 1995. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. - Nature 376, 765-768.
  • Larkin, J.C., Young, N., Prigge, M., & Marks, M.D. 1996. The control of trichome spacing and number in Arabidopsis. -Development 122, 997-1005.
  • Lawrence, P.A. 1992. The Making of a Fly. The Genetics of Animal Design. 228 pp. Blackwell Scientific Publications, Oxford.
  • Lawrence, P.A. & Hayward, P. 1971. The developnlent of a simple pattern: spaced hairs in Oncopeltus fasciatus. -Journal of Cell Science 8, 513-524.
  • McGhee, G.R. Jr. 1998. Theoretical morphology. 316 pp. Columbia University Press, New York.
  • Meinhardt, H. 1995. The Algorithmic Beauty of Sea Shells. 204 pp. Springer-Verlag, Berlin.
  • Miller, J. 1975. Structure and function of trilobite terrace lines. -Fossils and Strata 4, 155-178.
  • Murray, J.D. 1993. Mathematical Biology. 767 pp. Springer-Verlag, Berlin.
  • Murray, J.D., Maini, P.K., & Tranquillo, R.T. 1988. Mechano-chemical models for generating biological patterns and form in development. -Physics Reports 171, 59-84.
  • Odell, G., Oster, G., Alberch, P., & Burnside, B. 1981. The mechanical basis of morphogenesis 1: Epithelial folding and invagination. -Developmental Biology 85, 446-462.
  • Orenic, T.V., Held Jr., L.I., Paddock, S.W., & Carroll, S.B. 1993. The spatial organization of epidermal structures: hairy establishes the geometrical pattern of Drosophila leg bristles by delimiting the domains of achaete expression. - Development 118, 9-20.
  • Pearson, J.E. 1993. Complex patterns in a simple system. - Sczence 261, 189.
  • Pillet, J. 1973. Sur quelques trilobites ordoviciens d'Iran oriental. -Annales de la Société géologique du Nord 93, 33-38.
  • Sachs, T. 1991. Pattern Formation in Plant Tissues. 234 pp. Cambridge University Press, New York.
  • Schmalfuss, H. 1981. Structure, patterns and function of cuticular terraces in trilobites. - Lethaia 14. 331-341.
  • Seilacher, A. 1991. Self-organizing mechanisms in morphogenesis and evolution. In: N. Schmidt-Kittler & K. Vogel (eds.), Constructional Morphology and Evolution, 251-271. Springer-Verlag, Berlin.
  • Simpson, P. 1990. Lateral inhibition and the development of the sensory bristles of the adult peripheral nervous system of Drosophila. -Development 109,509-519.
  • Simpson, P., Woehl, R., & Usui, K. 1999. The development and evolution of bristle patterns in Diptera. - Development 126, 1349-1364.
  • Smith, L.H. 1998. Asymmetry of Early Paleozoic trilobites. - Lethaia 31, 99-112.
  • Størmer, L. 1980. Sculpture and microstructure of the exoskeleton in chasmoponid and phacopid trilobites. - Palaeontology 23, 237-271.
  • Tripp, R.P. 1957. The trilobite Encrinurus multisegmentatus (Portlock) and allied Middle and Upper Ordovician species. - Palaeontology 1, 60-72.
  • Tripp, R.P, Temple, J.T., & Gass, K.C. 1977. The Silurian trilobite Encrinurus variolaris and allied species, with notes on Frammia. - Palaeontology 20, 847-867.
  • Turing, A. 1952. The chemical basis of morphogenesis. -Philosophical Transactions of the Royal Society of London B 237, 37-72.
  • Wallet, F. & Dussert, C. 1997. Multifactorial comparative study of spatial point pattern analysis methods. -Journal of Theoretical Biology 187, 437-447.
  • Whittington, H.B. 1997. Morphology of the exoskeleton. In: R.L. Kaesler (ed.), Treatise on Invertebrate Paleontology, Part O, Artkropoda 1, Revised, 1-85. The Geological Society of America and The University of Kansas Press, Lawrence, Kansas.
  • Wigglesworth, V.B. 1940. Local and general factors in the development of pattern in Rhodnius prolixus (Hemiptera). - Journal of Experimental Biology 17, 180-200.
  • Wilmot, N.V. 1991. Sensory field maps of proetide trilobites. -Transactions of the Royal Society of Edinburgh: Earth Sciences 82, 183-193.
  • Wolpert, L. & Stein, W.D. 1984. Positional information and pattern formation. In: G.M. Malacinski & S.V. Bryant (eds.), A Primer in Developmental Biology, 3-21. Macmillan, London.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-e6f465ca-ec88-4e54-ac8c-812b7351748a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.