PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 52 | 3 |

Tytuł artykułu

Symmetry disorders of the test of the Miocene echinoid Echinocyamus from Poland

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper presents cases of disorders in the test symmetry in three species of Echinocyamus (E. pusillus, E. calariensis, and E. apicatus) from the Miocene deposits of Poland. It is the first study of this topic based on fossil material. The large collection (ca. 60 000 specimens) allowed distinction of several types of these rare disorders (14 specimens), which are illustrated by SEM and explanatory drawings. An example of a deformity formed on the pentamerous system is also presented. The deformations develop in the rudiment; consequently the apical system and the test of the mature individual which is formed at its margin display disorders. The anomalies most commonly appear as an additional growth zone (6−ray symmetry), lack of one growth zone (4−ray symmetry), or both deformations simultaneously (changed 5−ray symmetry). The changes appear in the apical system (number of ocular pores), test (number of petals), and peristome outline. The anomaly linked with the incorrect position of the periproct on the test surface, resulting from the delay of its displacement during early ontogenic stages, is characteristic and unique for such deformations.

Wydawca

-

Rocznik

Tom

52

Numer

3

Opis fizyczny

p.503-518,fig.,ref.

Twórcy

autor
  • Warsaw University, Zwirki i Wigury 93, 02-089 Warsaw, Poland

Bibliografia

  • Ali, M.S.M. and Mączyńska, S. 1986. Middle Miocene echinoids in the Tethys (Egypt) and the Paratethys (Poland). Neues Jahrbuch für Geologie und Paläontologie Monatshefte 10: 577–586.
  • Aragón, J.L., Torres, M., Gil, D., Barrio, R.A., and Maini, P.K. 2002. Turing patterns with pentagonal symmetry.Physical Review E 65 051913: 1–9.
  • Arenas−Mena, C., Martinez, P., Cameron, R.A., and Davidson, E.H. 1998. Expression of the Hox gene complex in the indirect development of a sea urchin. Proceedings of the National Academy of Sciences 95: 13062–13067.
  • Bałuk, W. and Radwański, A. 1977. Organic communities and facies development of the Korytnica basin (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geologica Polonica 27: 85–123.
  • Breder, C.M. Jr. 1955. Observations on the occurrence and attributes of pentagonal symmetry. Bulletin of the American Museum of Natural History 106: 173–220.
  • Capeder, G. 1906. Fibularidi del Mioceno di S. Davino a Mare (Portotorres), Sardegna. Bolletino della Società Geologica Italiana 25: 495–534.
  • Capeder, G. 1907. Sopra alcune forme teratologiche di Fibularidi del miocene medio della Sardegna. Rivista Italiana di Paleontologia 13: 28–35.
  • Ceranka, T. and Złotnik, M. 2003. Traces of cassid snails predation upon the echinoids from the Middle Miocene of Poland. Acta Palaeontologica Polonica 48: 491–496.
  • Ceranka, T. 2007. Jeżowce mioceńskie Gór Świętokrzyskich i Roztocza, ich taksonomia, ekologia i tafonomia. 193 pp. Unpublished Ph. thesis. University of Warsaw, Warszawa.
  • Cotteau, G. 1895. Description des Échinides recueillis par M. Lovisato dans le Miocène de la Sardaigne. Mémoires de la Société Géologique de France, Paléontologie 13: 5–56.
  • David, B. and Mooi, R. 1996. Embryology supports a new theory of skeletal homologies for the phylum Echinodermata. Comptes Rendus de l'Académie des Sciences, Paris 319: 577–584.
  • David, B. and Mooi, R. 1998. Major events in the evolution of echinoderms viewed by the light of embryology. In: R. Mooi and M. Telford (eds.), Echinoderms, 21–28. Balkema, Rotterdam.
  • David, B. and Mooi, R. 1999. Comprendre les échinodermes: la contribution du modéle extraxial−axial. Bulletin de la Société Géologique de France 170: 91–101.
  • David, B., Lafebvre, B., Mooi, R., and Parsley, R. 2000. Are homalozoans echinoderms? An answer from the extraxial−axial theory. Paleobiology 26: 529–555.
  • Davidson, E.H., Cameron, R.A., and Ransick, A. 1998. Specification of cell fate in the sea urchin embryo: summary and some proposed mechanism. Development 125: 3269–3290.
  • Durham, J.W. 1966. Anatomy. In: R.C. Moore (ed.), Treatise on Invertebrate Paleontology, U214–U220. Geological Society of America, Boulder and University of Kansas Press, Lawrence.
  • Emlet, R.B. 1985. Crystal axes in Recent and fossil echinoids indicate trophic mode in larval development. Science 230: 937–940.
  • Emlet, R.B. 1995. Larval spicules, cilia, and symmetry as remnants of indirect development in the direct developing sea urchin Heliocidaris erythrogramma. Developmental Biology 167: 405–415.
  • Gosselin, P. and Jangoux, M. 1998. From competent larva to exotrophic juvenile: a morphofunctional study of the perimetamorphic period of Paracentrotus lividus (Echinodermata, Echinoida). Zoomorphology 118: 31–43.
  • Gutowski, J. 1984. Sedimentary enviroment and synecology of macrobenthic assemblages of the marly sands and red algal limestones in the Korytnica Basin (Middle Miocene, Holy Cross Mountains, Central Poland). Acta Geologica Polonica 34: 325–339.
  • Hart, M.W. 2002. Life history evolution and comparative developmental biology of echinoderms. Evolution and Development 4: 62–71.
  • Hinegardner, R.T. 1975. Morphology and genetics of sea urchin development. American Zoology 15: 679–689.
  • Hotchkiss, F.H.C. 1998. A “rays−as−appendages” model for the origin of pentamerism in echinoderms. Paleobiology 24: 200–214.
  • Hotchkiss, F.H.C. 2000a. On the number of rays in starfish. American Zoology 40: 340–354.
  • Hotchkiss, F.H.C. 2000b. Inferring the developmental basis of the sea star abnormality “double ambulacral groove” (Echinodermata: Asteroidea). Revista chilena de historia natural 73: 582–588.
  • Jackson, R.T. 1927. Studies of Arbacia punctulata and allies, and of nonpentamerous Echini. Memoirs of the Boston Society of Natural History 8: 435–565.
  • Jesionek−Szymańska, W. 1968. Irregular echinoids—an insufficiently known group. Lethaia 1: 50–62.
  • Jura, Cz., Krzanowska, H., and Rzehak, K. 1985. Podstawy embriologii zwierząt. 520 pp. PWN, Warszawa.
  • Kier, P.M. 1968. Echinoids from the Middle Eocene Lake City Formation of Georgia. Smithsonian Miscellaneous Collection 153: 1–45.
  • Koehler, R. 1924. Anomalies, irrégularités et déformations du test chez les Échinides. Annales de l'Institut Océanographique 9: 159–480.
  • Kroh, A. 2005. Catalogus Fossilium Austriae, Band 2, Echinoidea neogenica. 210 pp. Verlag der Österreichischen Akademie der Wissenschaften, Wien.
  • Lambert, J. 1907. Description des échinides fossiles des terrains miocéniques de la Sardaigne. Mémoires de la Société Paleontologique Suisse 34: 1–72.
  • Lowe, Ch.J., Issel−Tarver, L., and Wray, G.A. 2002. Gene expression and larval evolution: changing roles of distal−less and orthodenticle in echinoderm larvae. Evolution and Development 4: 111–123.
  • Mączyńska, S. 1977. Echinoids from the Korytnica Basin (Middle Miocene; Holy Cross Mountains, Poland).Acta Geologica Polonica 27: 193–200.
  • Mączyńska, S. 1987. A supplementary account on the echinoids from the Korytnica Basin (Middle Miocene, Holy Cross Mountains, Central Poland). Acta Geologica Polonica 37: 145–153.
  • Mączyńska, S. 1991. The Miocene echinoids of Poland. Bulletin of the Geological Society of Greece 25: 549–560.
  • Martinez, P., Rast, J.P., Arenas−Mena, C., and Davidson, E.H. 1999. Organization of an echinoderm Hox gene cluster. Proceedings of the National Academy of Sciences 96: 1469–1474.
  • Melville, R.V. and Durham, J.W. 1966. Skeletal morphology. In: R.C. Moore (ed.), Treatise on Invertebrate Paleontology, U220–U257. Geological Society of America, Boulder and University of Kansas Press, Lawrence.
  • Minsuk, S.B. and Raff, R.A. 2002. Pattern formation in a pentameral animal: induction of early adult rudiment development in sea urchins. Developmental Biology 247: 335–350.
  • Mooi, R. and David, B. 1997. Skeletal homologies of echinoderms. The Paleontological Society Papers 3: 305–335.
  • Mooi, R., David, B., and Wray G. 2005. Arrays in rays: terminal addition in echinoderms and its correlation with gene expression. Evolution and Development 7: 542–555.
  • Morris, V.B., Zhao, J−T., Shearman, D.C.A., Byrne, M., and Frommer, M. 2004. Expression of an Otx gene in the adult rudiment and the developing central nervous system in the vestibula larva of the sea urchin Holopneustes purpurescens. International Journal of Developmental Biology 48: 17–22.
  • Mortensen, Th. 1948. A monograph of the Recent Echinoidea IV.2 Clypeastroida. Clypeastridae, Arachnoididae, Fibulariidae, Laganidae and Scutellidae. 471 pp. C.A. Reitzel, Copenhagen.
  • Müller, O.F. 1776. Zoologiae Danicae prodromus, seu Animalium Daniae et Norvegiae indigenarum characters, nomina, et synonyma imprimis popularium. xxxii + 282 pp. Hallageriis, Havniae (Copenhagen).
  • Nielsen, M.G., Popodi, E., Minsuk, S., and Raff, R.A. 2003. Evolutionary convergence in Otx expression in the pentameral adult rudiment in direct−developing sea urchins. Development Genes and Evolution 213: 73–82.
  • Peterson, K.J., Arenas−Mena, C., and Davidson, E.H. 2000a. The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules. Evolution and Development 2: 93–101.
  • Peterson, K.J., Cameron, R.A., and Davidson, E.H. 2000b. bilaterian origins: significance of new experimental observations. Developmental Biology 219: 1–17.
  • Popodi, E. and Raff, R.A. 2001. Hox genes in a pentameral animal. BioEssays 23: 211–214.
  • Radwański, A. 1969. Lower Tortonian transgression onto the southern slopes of the Holy Cross Mountains.Acta Geologica Polonica 19: 1–64.
  • Raff, E.C., Popodi, E.M., Kauffman, J.S., Sly, B.J., Turner, F.R., Morris, V.B., and Raff, R.A. 2003. Regulatory punctuated equilibrium and convergence in the evolution of developmental pathways in direct−developing sea urchins. Evolution and Development 5: 478–493.
  • Raff, E.C., Popodi, E.M., Sly, B.J., Turner, F.R., Villinski, J.T., and Raff, R.A. 1999. A novel ontogenetic pathway in hybrid embryos between species with different modes of development. Development 126: 1937–1945.
  • Saucède, T., Mooi, R., and David, B. 2003. Combining embryology, paleontology and phylogeny: origins of the anterior−posterior axis in irregular echinoids. Comptes Rendus de l'Académie des Sciences, Paris, Paleovol Special Volume in Honor of Stephen J. Gould 2: 399–412.
  • Saucède, T., Mooi, R., and David, B. 2004. Evolution to the extreme: origins of the highly modified apical system in pourtalesiid echinoids. Zoological Journal of the Linnean Society 140: 137–155.
  • Sly, B.J., Hazel, J.C., Popodi, E.M., and Raff, R.A. 2002. Patterns of gene expression in the developing adult sea urchin central nervous system reveal multiple domains and deep−seated neural pentamery. Evolution and Development 4: 189–204.
  • Smith, A.B. 1997. Echinoderm larvae and phylogeny. Annual Review of Ecology and Systematics 28: 219–241.
  • Spirov, A.V. 1996. Genes, Morphogenesis, Evolution: Life and Alive Aspects. World Wide Web electronic monograph. http://www.geocities.com/ResearchTriangle/Thinktank/1765/monogr/monograph.html (last updated 1 April 1996).
  • Szymanko, J. and Wójcik, K. 1982. Geology of the Middle Miocene Korytnica Basin (Central Poland) in the light of geophysical data and photogeological analysis. Acta Geologica Polonica 32: 93–108.
  • Wray, G.A. and Bely, A.E. 1994. The evolution of echinoderm development is driven by several distinct factors. Development 1994 (Supplement): 97–106.
  • Złotnik, M. and Ceranka, T. 2005. Patterns of drilling predation of cassid gastropods preying on echinoids from the Middle Miocene of Poland. Acta Palaeontologica Polonica 50: 409–428.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-e51d3fa1-b98a-460e-9a10-16ce833d3f1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.