PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 58 | 4 |

Tytuł artykułu

Impact of proteomics on anti-Mycobacterium tuberculosis [MTB] vaccine development

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Tuberculosis is a serious infection disease which causes more than two million deaths annually. The TB pandemic has continued despite widespread use of the only available licensed TB vaccine - Bacillus Calmette-Guerin (BCG). Additionally, the increasing incidences of multidrug resistant strains and coinfection with HIV mean that tuberculosis constitutes a growing global threat. Thus, improvement of the vaccination strategy against TB is an urgent need, requiring international cooperation of the research community. The completion of many mycobacterial genome sequences has greatly facilitated the global analysis at the transcriptome and proteome level. This in consequence has accelerated progress in the vaccinology field resulting in identification of a large numbers of antigens with potential in TB vaccines. This review concentrates on the proteomic contribution to TB vaccinology. At the end of the article some recent achievements of structural proteomics and developing an epitope-driven tuberculosis vaccine are presented.

Wydawca

-

Rocznik

Tom

58

Numer

4

Opis fizyczny

p.281-287,ref.

Twórcy

  • University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
autor

Bibliografia

  • Andersen P., D. Askgaard, L. Ljungqvist, J. Bennedsen and I. Heron. 1991. Proteins released from Mycobacterium tuberculosis during growth. Infect. Immun. 59: 1905-1910.
  • Arcus V.L., J.S. Lott, J.M. Johnston and E.N. Baker. 2006. The potential impact of structural genomics on tuberculosis drug discovery. Drug Discov. Today 11: 28-34.
  • Baker E.N. 2007. Structural genomics as an approach towards understanding the biology of tuberculosis. J. Struct. Funct. Genomics 8: 57-65.
  • Berthet F.X., P.B. Rasmussen, E Rosenkrands, P. Andersen and B. Gicquel. 1998. A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology 144 ( Pt 11): 3195-3203.
  • Betts J.C., P. Dodson, S. Quan, A.P. Lewis, P.J. Thomas, K. Duncan and R.A. McAdam. 2000. Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551. Microbiology 146 (Pt 12): 3205-3216.
  • Betts J.C., P.T. Lukey, L.C. Robb, R.A. McAdam and K. Duncan. 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43: 717-731.
  • Brennan M.J., U. Fruth, J. Milstien, R. Tiernan, S. de Andrade Nishioka, L. Chocarro, N. Developing Countries Vaccine Regulatory, R. the Ad Hoc and T.B.E. Panel. 2007. Development of new tuberculosis vaccines: a global perspective on regulatory issues. PLoS Med. 4: e252.
  • Brodin P., E Rosenkrands, P. Andersen, S.T. Cole and R. Brosch. 2004. ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol. 12: 500-508.
  • Brosch R., S.V. Gordon, M. Marmiesse, P. Brodin, C. Buchrieser, K. Eiglmeier, T. Gamier, C. Gutierrez, G. Hevvinson, K. Kremer and others. 2002. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Prod. Natl. Acad. Sci. USA 99: 3684-3689.
  • Brosch R., S.V. Gordon, T. Garnier, K. Eiglmeier, W. Frigui, P. Valenti, S. Dos Santos, S. Duthoy, C. Lacroix, C. Garcia-Pelayo and others. 2007. Genome plasticity of BCG and impact on vaccine efficacy. Proc. Natl. Acad. Sci. USA 104: 5596-5601.
  • Canas B., D. Lopez-Ferrer, A. Ramos-Fernandez, E. Camafeita and E. Calvo. 2006. Mass spectrometry technologies for proteomics. Brief Funct. Genomic. Proteomic. 4: 295-320.
  • Cho S.H., D. Goodlett and S. Franzblau. 2006. ICAT-based comparative proteomic analysis of non-replicating persistent Mycobacterium tuberculosis. Tuberculosis (Edinb) 86: 445 -460.
  • Cole S.T., R. Brosch, J. Parkhill, T. Gamier, C. Churcher, D. Harris, S.V. Gordon, K. Eiglmeier, S. Gas, C.E. Barry, 3rd and others. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537-544.
  • Covert B.A., J.S. Spencer, EM. Orme and J.T. Belisle. 2001. The application of proteomics in defining the T cell antigens of Mycobacterium tuberculosis. Proteomics 1: 574-586.
  • De Groot A.S., J. McMurry, L. Marcon, J. Franco, D. Rivera, M. Kutzler, D. Weiner and B. Martin. 2005. Developing an epitope-driven tuberculosis (TB) vaccine. Vaccine 23: 2121-2131.
  • de Souza G.A., H. Malen, T. Softeland, G. Saelensminde, S. Prasad, E Jonassen and H.G. Wiker. 2008. High accuracy mass spectrometry analysis as a tool to verify and improve gene annotation using Mycobacterium tuberculosis as an example. BMC Genomics 9: 316.
  • Dietrich J., C. Aagaard, R. Leah, A.W. Olsen, A. Stryhn, T.M. Doherty and P. Andersen. 2005. Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J. Immunol. 174: 6332-6339.
  • Dietrich J., C.V. Lundberg and P. Andersen. 2006. TB vaccine strategies - what is needed to solve a complex problem? Tuberculosis (Edinb) 86: 163-168.
  • Doherty T.M. and P. Andersen. 2005. Vaccines for tuberculosis: novel concepts and recent progress. Clin. Microbiol. Rev. 18: 687-702.
  • Domon B. and R. Aebersold. 2006. Mass spectrometry and protein analysis. Science 312: 212-217.
  • Fleischmann R.D., D. Alland, J.A. Eisen, L. Carpenter, O. White, J. Peterson, R. DcBoy, R. Dodson, M. Gwinn, D. Haft and others. 2002. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacterial. 184: 5479-5490.
  • Florczyk M.A., L.A. McCue, R.F. Stack, C.R. Hauer and K.A. McDonough. 2001. Identification and characterization of mycobacterial proteins differentially expressed under standing and shaking culture conditions, including Rv2623 from a novel class of putative ATP-binding proteins. Infect. Immun. 69: 5777-5785.
  • Fortune S.M., A. Jaeger, D.A. Sarracino, M.R. Chase, CM. Sassetti, D.R. Sherman, B.R. Bloom and E.J. Rubin. 2005. Mutually dependent secretion of proteins required for mycobacterial virulence. Proc. Natl. Acad. Sci. USA 102: 10676-10681.
  • Garnier T., K. Eiglmeier, J.C. Camus, N. Medina, H. Mansoor, M. Pryor, S. Duthoy, S. Grondin, C. Lacroix, C. Monsempe and others. 2003. The complete genome sequence of Mycobacterium bovis. Proc. Natl. Acad. Sci. USA 100: 7877-7882.
  • Gayathri P., H. Balaram and M.R. Murthy. 2007. Structural biology of plasmodial proteins. Curr. Opin. Struct. Biol. 17: 744-754.
  • Guinn K.M., M.J. Hickey, S.K. Mathur, K.L. Zakel, J.E. Grotzke, D.M. Lewinsohn, S. Smith and D.R. Sherman. 2004. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol. Microbiol. 51: 359-370.
  • He X.Y., Y.H. Zhuang, X.G. Zhang and G.L. Li. 2003. Comparative proteome analysis of culture supernatant proteins of Mycobacterium tuberculosis H37Rv and H37Ra. Microbes Infect. 5: 851-856.
  • Hsu T., S.M. Hingley-Wilson, B. Chen, M. Chen, A.Z. Dai, P.M. Morin, C.B. Marks, J. Padiyar, C. Goulding, M. Gingery and others. 2003. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc. Natl. Acad. Sci. USA 100: 12420-12425.
  • Jungblut P.R., U.E. Schaible, H.J. Mollenkopf, U. Zimny-Arndt, B. Raupach, J. Mattow, P. Halada, S. Lamer, K. Hagens and S.H. Kaufmann. 1999. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol. Microbiol. 33: 1103-1117.
  • Jungblut P.R., E.C. Muller, J. Mattow and S.H. Kaufmann. 2001. Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics. Infect. Immun. 69: 5905-5907.
  • Lee S.Y. and D. Jeoung. 2007. The reverse proteomics for identification of tumor antigens. J. Microbiol. Biotechnol. 17: 879-890.
  • Maillet I., P. Berndt, C. Malo, S. Rodriguez, R.A. Brunisholz, Z. Pragai, S. Arnold, H. Langen and M. Wyss. 2007. From the genome sequence to the proteome and back: evaluation of E. coli genome annotation with a 2-D gel-based proteomics approach. Proteomics 7: 1097-1106.
  • Malen H., F.S. Berven, K.E. Fladmark and H.G. Wiker. 2007. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics 7: 1702-1718.
  • Malen H., F.S. Berven, T. Softeland, M.O. Arntzen, CS. D'Santos, CA. De Souza and H.G. Wiker. 2008. Membrane and membrane-associated proteins in Triton X-114 extracts of Mycobacterium bovis BCG identified using a combination of gel-based and gel-free fractionation strategies. Proteomics 8: 1859-1870.
  • Malmstrom J., H. Lee and R. Aebersold. 2007. Advances in proteomic workflows for systems biology. Curr. Opin. Biotechnol. 18: 378-384.
  • Matharoo-Ball B., G. Ball and R. Rees. 2007. Clinical proteomics: discovery of cancer biomarkers using mass spectrometry and bioinformatics approaches - a prostate cancer perspective. Vaccine 25 Suppl 2: B 110-121.
  • Mattow J., P.R. Jungblut, U.E. Schaible, H.J. Mollenkopf, S. Lamer, U. Zimny-Arndt, K. Hagens, E.C. Muller and S.H. Kaufmann. 2001. Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains. Electrophoresis 22: 2936-2946.
  • Mattow J., U.E. Schaible, F. Schmidt, K. Hagens, F. Siejak, G. Brestrich, G. Haeselbarth, E.C. Muller, P.R. Jungblut and S.H. Kaufmann. 2003. Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Electrophoresis 24: 3405-3420.
  • Mattow J., F. Siejak, K. Hagens, D. Becher, D. Albrecht, A. Krah, F. Schmidt, P.R. Jungblut, S.H. Kaufmann and U.E. Schaible. 2006. Proteins unique to intraphagosomally grown Mycobacterium tuberculosis. Proteomics 6: 2485-2494.
  • Mattow J., F. Siejak, K. Hagens, F. Schmidt, C. Koehler, B.Treumann, U.E. Schaible and S.H. Kaufmann. 2007 An improved strategy for selective and efficient enrichment of integral plasma membrane proteins of mycobacteria. Proteomics 7: 1687-1701.
  • McMurry J., H. Sbai, M.L. Gennaro, E.J. Carter, W. Martin and A.S. De Groot. 2005. Analyzing Mycobacterium tuberculosis proteomes for candidate vaccine epitopes. Tuberculosis (Edinb) 85: 95-105.
  • Medini D., D. Serruto, J. Parkhill, D.A. Relman, C. Donati, R. Moxon, S. Falkow and R. Rappuoli. 2008. Microbiology in the post-genomic era. Nat. Rev. Microbiol. 6: 419-430.
  • Mollenkopf H.J., J. Mattow, U.E. Schaible, L. Grode, S.H. Kaufmann and P.R. Jungblut. 2002. Mycobacterial proteomes. Methods Enzymol. 358: 242-256.
  • Mollenkopf H.J., L. Grode, J. Mattow, M. Stein, P. Mann, B. Knapp, J. Ulmer and S.H. Kaufmann. 2004. Application of mycobacterial proteomics to vaccine design: improved protection by Mycobacterium bovis BCG prime-Rv3407 DNA boost vaccination against tuberculosis. Infect. Immun. 72: 6471-6479.
  • Nesvizhskii A.I. 2007. Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol. Biol. 367: 87-119.
  • Okkels L.M., E.C. Muller, M. Schmid, I. Rosenkrands, S.H. Kaufmann, P. Andersen and P.R. Jungblut. 2004. CFP10 discriminates between nonacetylated and acetylated ESAT-6 of Mycobacterium tuberculosis by differential interaction. Proteomics 4: 2954-2960.
  • Olsen A.W., A. Williams, L.M. Okkels, G. Hatch and P. Andersen. 2004. Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model. Infect. Immun. 72: 6148-6150.
  • Pajon R., D. Yero, A. Lage, A. Llanes and C.J. Borroto. 2006. Computational identification of beta-barrel outer-membrane proteins in Mycobacterium tuberculosis predicted proteomes as putative vaccine candidates. Tuberculosis (Edinb) 86: 290-302.
  • Pheiffer C, J.C. Betts, H.R. Flynn, P.T. Lukey and P. van Helden. 2005. Protein expression by a Beijing strain differs from that of another clinical isolate and Mycobacterium tuberculosis H37Rv. Microbiology 151:1139-1150.
  • Pleissner K.P., T. Eifert and P.R. Jungblut. 2002. A European Pathogenic Microorganism Proteome Database: Construction and Maintenance. Comp. Funct. Genomics 3: 97-100.
  • Pleissner K.P., T. Eifert, S. Buettner, F. Schmidt, M. Boehme, T.F. Meyer, S.H. Kaufmann and P.R. Jungblut. 2004. Web-accessible proteome databases for microbial research. Proteomics 4: 1305-1313.
  • Rachman H. and S.H. Kaufmann. 2007. Exploring functional genomics for the development of novel intervention strategies against tuberculosis. Int. J. Med. Microbiol. 297: 559-567.
  • Raviglione M.C. 2007. The new Stop TB Strategy and the Global Plan to Stop TB, 2006-2015. Bull. World Health Organ. 85: 327.
  • Rezwan M., M.A. Laneelle, P. Sander and M. Daffe. 2007. Breaking down the wall: fractionation of mycobacteria. J. Microbiol. Methods 68: 32-39.
  • Rodriguez-Ortega M.J., N. Norais, G. Bensi, S. Liberatori, S. Capo, M. Mora, M. Scarselli, F. Doro, G. Ferrari, I, Garaguso and others. 2006. Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat. Biotechnol. 24: 191-197.
  • Rosenkrands I., A. King, K. Weldingh, M. Moniatte, E. Moertz and P. Andersen. 2000a. Towards the proteome of Mycobacterium tuberculosis. Electrophoresis 21: 3740-3756.
  • Rosenkrands I., K. Weldingh, S. Jacobsen, C.V. Hansen, W. Florio, I. Gianetri and P. Andersen. 2000b. Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis 21: 935-948.
  • Sable S.B., I. Verma and G.K. Khuller. 2005. Multicomponent antituberculous subunit vaccine based on immunodominant antigens of Mycobacterium tuberculosis. Vaccine 23: 4175-4184.
  • Schmidt F., S. Donahoe, K. Hagens, J. Mattow, U.E. Schaible, S.H. Kaufmann, R. Aebersold and P.R. Jungblut. 2004. Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol. Cell. Proteomics 3: 24-42.
  • Simpson R.J., O.K. Bernhard, D.W. Greening and R.L. Moritz. 2008. Proteomics-driven cancer biomarker discovery: looking to the future. Curr. Opin. Chem. Biol. 12: 72-77.
  • Skeiky Y.A. and J.C. Sadoff. 2006. Advances in tuberculosis vaccine strategies. Nat. Rev. Microbiol. 4: 469-476.
  • Sleno L. and A. Emili. 2008. Proteomic methods for drug target discovery. Curr. Opin. Chem. Biol. 12: 46-54.
  • Smit van Dixhoorn M.G., R. Munir, G. Sussman, R. Stad, M. de Haan, T. van der Hoeven, H. Rauwerda, T.M. Breit, G.G. Thallinger and A.A. Wadee. 2008. Gene expression profiling of suppressor mechanisms in tuberculosis. Mol. Immunol. 45: 1573-1586.
  • Smith R.D. 2006. Future directions for electrospray ionization for biological analysis using mass spectrometry. Biotechniques 41: 147-148. Song H., R. Sandie, Y. Wang, M.A. Andrade-Navarro and M. Niederweis. 2008. Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis (Edinb) 88: 526-544.
  • Starck J., G. Kallenius, B.E Marklund, D.E Andersson and T. Akerlund. 2004. Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology 150: 3821-3829.
  • World Health Organization. 2006. Global Tuberculosis Control: Surveillance, Planning, Financing. WHO Report 2006 (WHO/ HTM/TB 2006.362). WHO, Geneva.
  • Young D. and C. Dye. 2006. The development and impact of tuberculosis vaccines. Cell 124: 683-687.
  • Zhang C, O. Crasta, S. Cammer, R. Will, R. Kenyon, D. Sullivan, Q. Yu, W. Sun, R. Jha, D. Liu and others. 2008. An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data. Nucleic Acids Res. 36: D884-891.
  • Zheng J., C. Wei, W. Leng, J. Dong, R. Li, W. Li, J. Wang, Z. Zhang and Q. Jin. 2007. Membrane subproteomic analysis of Mycobacterium bovis bacillus Calmette-Guerin. Proteomics 7: 3919-3931.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-e347dc80-f60a-4ff8-b74a-8e8c6cbc54db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.