PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 17 | 6 |

Tytuł artykułu

Glufosinate phytotoxicity to maize under salt stress conditions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this report we describe the responses of two maize varieties (Koka and Limko) to combined action of glufosinate and salinity. Glufosinate (phosphinothricin) is a non-selective herbicide that binds to the active site of glutamine synthetase (GS) and irreversibly inhibits this enzyme. Maize seedlings were grown in hydroponic cultures in complete nutrient solution under the following conditions: 16h photoperiod (220 |j,mol-m-2-s -1) at 26/20°C day/night, 65-70% relative humidity. The growth experiment (determination of dry matter produc­tion) was 2 x 2 factorial arrangement with two levels of NaCl in nutrient solution, 0 and 60 mmol-dm-3 NaCl and four levels of glufosinate in nutrient 0, 0.010, 0.025, 0.050 mmol-dm-3. Salt stress significantly decreased dry weight of both maize varieties. Glufosinate also caused reduction in growth of maize seedlings and the amount of inhibition was dependent on herbicide concentration and part of plant. Combined action of glufos- inate and NaCl caused marked reduction in plant growth but in some cases (roots of Koka and shoots of Limko), this negative effect was mainly induced by NaCl. Biochemical analyses (determination of ammoni­um and nitrate concentration, content of water-soluble protein) were carried out at two levels of each treatment (0 and 0.050 mmol-dm-3 glufosinate, 0 and 60 mmol-dm-3 NaCl). Plants treated by glufosinate accumulated 3­4-fold more ammonium than control plants and also contained more nitrate than control. The combined action of glufosinate and NaCl resulted in a significant decrease in ammonium content in maize leaves compared to sole herbicide treatment, whereas in roots ammonium concentration remained at the same level. Under com­bined actions of herbicide and NaCl alterations in concentration of water-soluble protein and nitrate content were relatively small.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

17

Numer

6

Opis fizyczny

p.993-996,fig.,ref.

Twórcy

autor
  • Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53, 50-357 Wroclaw, Poland
autor

Bibliografia

  • 1. ZALEWSKI A. Evolution in plant protection products use in Poland. RN SERiA 9, 567, 2007 [In Polish].
  • 2. MITHILA J., SWANTON C.J., BLACKSHAW R.E., CATHCART R.J., HALL J.C. Physiological basis for 17. reduced glyphosate efficacy on weeds grown under low soil nitrogen. Weed Science 56, 12, 2008.
  • 3. SACALA E., DEMCZUK A., MICHALSKI T. Response of maize (Zea mays L.) to rimsulfuron under salt conditions. Acta Soc. Bot. Pol. 72, 93, 2003.
  • 4. RAMSEY R.J.L., STEPHENSON G.R., HALL J.C. Effect 18 of relative humidity on uptake, translocation, and efficacy of glufosinate ammonium in wild oat (Avena fatua). Pest. Bioch. Physiol. 73, 1, 2002.
  • 5. MANDERSCHEID R., WILD A. Studies on the mechanism of inhibition by phosphinothricin effect of glutamine synthetase isolated from Triticum aestivum L. J. Plant Physiol. 123, 135, 1986.
  • 6. TAN S., EVANS R., SINGH B. Herbicidal inhibitors of amino acid biosynthesis and herbicide - tolerant crops. Amino Acids 30, 195, 2006.
  • 7. PORNPROM T., CHAMPOO J., GRACE B. Glufosinate tolerance in hybrid corn varieties based on decreasing ammonia accumulation. Weed Biology and Management 3, 41, 2003.
  • 8. PORNPROM T., SURAWALLANANON S., SRINIVES P. Ammonia accumulation as an index of glufosinate-tolerant soybean cell lines. Pesticide Biochemistry and Physiology 68,1C2, 2000.
  • 9. LOWRY O.H., ROSENBROUGH N.J., FARR A.L., RAN­DALL R.J. Protein measurement with folinphenol reagent. J. Biol. Chem. 193, 265, 1951.
  • 10. CATALDO D.A., HAROON M., SCHRADER L.E., YOUNGS V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 6, 71, 1975.
  • 11. WEATHERNBURN M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39, 971, 1967.
  • 12. FORTMEIER R, SCHUBERT S. Salt tolerance of maize (Zea mays L.); the role of sodium exclusion. Plant Cell Environ. 18, 1C41, 1995.
  • 13. PRASERTSONGSKUN S., SANGDUEN N., SUWAN- WONG S., SANTISOPASRI V., MATSUMOTO H. Increased activity and reduced sensitivity of glutamine syn- thetase in glufosinate-resistant vetiver (Vetiveria zizanioides Nash.) cells. Weed Biol. Management 2, 171, 2002.
  • 14. ASLAM M., HUFFAKER R.C., RAINS D.W. Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiol. 76, 321, 1984.
  • 15. ABDELGADIR E.M., OKA M., FUJIYAMA H. Characteristics of nitrate uptake by plants under salinity. J. Plant Nutrition 28, 33, 2005.
  • 16. SACALA E., DEMCZUK A., GRZYS E., SPIAK Z. Effect of salt and water stresses on growth, nitrogen and phospho­rus metabolism in Cucumis sativus L. seedlings. Acta Soc. Bot. Pol. 77, 23, 2008.
  • 17. TERCE-LAFORGUE T., DUBOIS F., FERRARIO-MERY S., POU DE CRECENZO M., SNAGWAN R., HIREL B. Glutamate dehydrogenase of tobacco is mainly induced in the cytosol of phloem companion cells when ammonia is provided either externally or released during photorespira­tion. Plant Physiol. 136, 43C8, 2004.
  • 18. SKOPELITIS D.S., PARANYCHIANAKIS N.V., PASCHALIDIS K.A., PLIAKONIS E.D., DELIS L.D., YAKOUMARKIS D.I., KOUVARAKIS A., PAPADAKIS A.K., STEPHANOU E.G., ROUBELAKIS-ANGELAKIS K.A. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18, 2767, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-df72ff6e-5ece-4b42-b693-eb8bf0a3468c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.