PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 48 | 3 |

Tytuł artykułu

Molecular analysis of a novel tandemly organized repetitive DNA sequence in Citrus limon [L.] Burm

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Repetitive sequences constitute a significant component of most eukaryotic genomes, and the isolation and characterization of repetitive DNA sequences provide an insight into the organization of the genome of interest. Here, we report the isolation and molecular analysis of a novel tandemly organized repetitive DNA sequence from the genome of Citrus limon. Digestion of C. limon DNA with Hinf I produced a prominent fragment of approximately 300 bp. Southern blotting revealed a ladder composed of DNA fragments that were multimers of the 300-bp Hinf I band. Thus, Hinf I digestion revealed a novel satellite, which we have called the C. limon satellite DNA 300 (CL300). Sequence analysis shows significant homology between a portion of the CL300 monomer and the transposase box of an En/Spm-like element. The CL300 satellite was also detected in grapefruit, sour orange, trifoliate orange and kumquat. These results suggest that the CL300 repeat is an ancient satellite, and we propose that a significant portion originated by amplification of a genomic region containing the En/Spm-like transposase element.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

48

Numer

3

Opis fizyczny

p.233-239,fig.,ref.

Twórcy

autor
  • University of Naples II, Via Vivaldi 43, 81100 Caserta, Italy
autor
autor

Bibliografia

  • Appels R, Moran LB, Gustafson JP, 1986. Rye heterochromatin. I. Studies on clusters of the major repeating sequence and the identification of a new dispersed repetitive sequence element. Can J Genet Cytol 28: 645-657.
  • Asins MJ, Garcia MR, Ruiz C, Carbonell EA, 2002. Molecular markers for the genetic analysis of apomixis. In: Jain SM, Brar DS, Ahloowalia BS, eds. Molecular techniques in crop improvement. Kluwer Academic Publishers, Dordrecht: 266-281.
  • Asins MJ, Monforte A J, Mestre PF, Carbonell EA, 1999. Citrus and Prunns copia-like retrotransposons. Theor Appl Genet 99: 503-510.
  • Beridze T, Tsirekidze N, Turishcheva MS, 1994. On the tertiary structure of the Citrus ichangensis satellite DNA. FEBS Lett 338: 179-182.
  • Charlesworth B, Sniegowski P, Stephan W, 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215-220.
  • Cheng Z J, Murata M, 2003. A centromeric tandem repeat family originating from a part of TY3/ gypsy-retroelement in wheat and its relatives. Genetics 164: 665-672.
  • De Felice B, Wilson RR, Ciarmiello L, Scarano MT, Ferrante S, 2006. Characterization of a novel satellite DNA sequence from Flying Dragon (Poncirus trifoliata). Genetica 127: 45-53.
  • De Felice B, Wilson RR, Ciarmiello L, Conicella C, 2004. A novel repetitive DNA sequence in lemon (Citrus limon (L.) Burm.) and related species. J Appl Genet 45: 315-320.
  • Dlakic M, Harrington RE, 1996. The effects of sequence context on DNA curvature. Proc Natl Acad Sci USA 93: 3847-3852.
  • Dover G, 2002. Molecular drive. Trends Genet 18: 587-589.
  • Elder JF, Turner BJ, 1995. Concerted evolution of repetitive DNA sequences in eukaryotes. Quart Rev Biol 70: 297-323.
  • Fann J-Y, Kovarik A, Hemleben V, Tsirekidze NI, Beridze TG, 2001. Molecular and structural evolution of Citrus satellite DNA. Theor Appl Genet 103: 1068-1073.
  • Gabrielan G, Simoncsits A, Pongor S, 1996. Distribution of bending propensity in DNA sequences. FEBS Lett 393: 124-130.
  • Henk AD, Warren RF, Innes RW, 1999. A new Ac-like transposon of Arabidopsis is associated with a deletion of the RPS5 disease resistance gene. Genetics 151: 1581-1589.
  • Jiang J, Nasuda S, Dong F, Scherrer WC, et al. 1996. A conserved repetitive DNA element located in the centromeres of cereal chromosomes. PNAS 93: 14210-14213.
  • Juan C, Vazquez P, Rubio JM, Petitpierre E, Hewitt GM. 1993. Presence of highly repetitive DNA sequences in Tribolium flour-beetles. Heredity 70: 1-8.
  • Kamm A, Galasso I, Schmidt T, Heslop-Harrison JS, 1995. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol Biol 27: 853-862.
  • Katsiotis A, Hagidimitriou M, Douka A, Hatzopoulos P, 1998. Genomic organization, sequence interrelationship and physical localization using in situ hybridization of two tandemly repeated DNA sequences in the genus Olea. Genome 41: 527-534.
  • Kidwell MG, Lisch DR, 2001. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution Int J Org Evolution 55: 1-24.
  • Kijas JM, Fowler JC, Thomas MR, 1995. An evaluation of sequence-tagged microsatellite site markers for genetic analysis within Citrus and related species. Genome 38: 349-355.
  • Kolchinsky A, Gresshoff PM, 1995. A major satellite DNA of soybean is a 92-base pairs tandem repeat. Theor Appl Genet 90: 621-626.
  • Kumar S, Tamura K, Jacobsen IB, Nei M, 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245.
  • Lim KY, Skalicka K, Koulakova B, Volkov RA, Matyasek R, Hemleben V, et al. 2004. Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana. Genetics 166: 1935-1946.
  • Lonnig WE, Saedler H, 1997. Plant transposon: contributors to evolution? Gene 205: 245-253.
  • Lucas H, Moore G, Murphy G, Flavell RB, 1992. Inverted repeats in the long terminal repeats of the wheat retrotransposon. Wis 2-1 A. Mol Biol Evol 1: 716-728.
  • Macas J, Meszaros T, Nouzová M, 2002. PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18: 28-35.
  • Martinez-Balbas A, Rodriguez-Campos A, Garcia- Ramirez M, Sainz J, Carrera P, Aymani J, Azorin F, 1990. Satellite DNAs contain sequences that induce curvature. Biochemistry 29: 2342-2348.
  • Moore G, Lucas H, Batty N, Flavell RB, 1991. A family of retrotransposons and associated genomic variation in wheat. Genomics 10: 461-468.
  • Murray MG, Thompson WF, 1980. Rapid isolation of high weight plant DNA. Nucleic Acids Res 8: 4321-4325.
  • Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E, 2000. Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100: 1155-1166.
  • Panaud O, Chen X, McCouch SR, 1995. Frequency of microsatellite sequences in rice (Oryza sativa L.). Genome 38: 1170-1176.
  • Richter TE, Ronald PC, 2000. The evolution of disease resistance genes. Plant Mol Biol 42: 195-204.
  • Smith GP, 1976. Evolution of repeated DNA sequences by unequal crossover. Science 191: 528-535.
  • Staginnus C, Huettel B, Desel C, Schmidt T, Kahl G, 2001. A PCR-based assay to detect En/Spm-like transposon sequences in plants. Chromosome Res 9: 591-605.
  • Ugarkovic D, Plohl M, 2002. Variation in satellite DNA profiles - causes and effects. EMBO J 21: 5955-5959.
  • Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B, 2001. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 26: 307-316.
  • Winberg BC, Zhou Z, Dallas JF, McIntyre CL, Gustafson JP, 1993. Characterization of minisatellite sequences from Oryza sativa. Genome 36: 978-983.
  • Yang ZN, Ye XR, Choi S, Molina J, Moonan F, Wing RA, et al. 2001. Construction of a 1.2-Mb contig including the citrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of Poncirus trifoliata (L.) Raf. Genome 44: 382-393.
  • Yang ZN, Ye XR, Molina J, Roose ML, Mirkov TE, 2003. Sequence analysis of a 282-kilobase region surrounding the citrus Tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiol 131: 482-492.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-df10bb57-264b-4f4b-91a4-72613260423e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.