PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2005 | 47 | 4 |

Tytuł artykułu

Modelling the seasonal dynamics of marine plankton in the Southern Baltic Sea. Part 1. A Coupled Ecosystem Model

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The paper presents a one-dimensional Coupled Ecosystem Model (1DCEM) consisting of three submodels: a meteorological submodel for the physics of the upper layer and a biological submodel, which is also driven by output from the physical submodel. The biological submodel with a high-resolution zooplankton module and a simple prey-predator module consists of seven mass conservation equations. There are six partial second-order differential equations of the diffusion type for phytoplankton, microzooplankton, mesozooplankton, fish, and two nutrient components (total inorganic nitrogen and phosphate). The seventh equation, an ordinary differential equation, describes the development of detritus at the bottom. In this model the mesozooplankton (herbivorous copepods) is represented by only one species – Pseudocalanus elongatus – and is composed of 6 cohorts. The fish predator is represented by 3 cohorts of early juvenile herring Clupea harengus. Hence, the biological submodel consists of an additional twelve equations, six for weights and six for the numbers in 6 cohorts of P. elongatus, and three equations for the biomasses of 3 predator cohorts. This model is an effective tool for solving the problem of ecosystem bioproductivity and was tested in Part 2 for one partcular year.

Wydawca

-

Czasopismo

Rocznik

Tom

47

Numer

4

Opis fizyczny

p.591-619,fig.,ref.

Twórcy

  • Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland

Bibliografia

  • Atwater M.A., Ball J.T., 1978, A numerical solar radiation model based on standard meteorological observations, Sol. Energy, 21 (3), 163–170.
  • Atwater M.A., Brown P. S., 1974, Numerical computations of the latitudinal variation of solar radiation for an atmosphere of varying opacity, J. Appl. Meteorol., 13, 289–297.
  • Billen G., Lancelot C., Meybeck M., 1991, N, P and Si retention along the aquatic continuum from land to ocean, [in:] Ocean margin processes in global change, physical, chemical, and earth sciences research, R. F. C. Mantoura, J.M. Martin & R. Wollast (eds.), Wiley & Sons, New York, 19–44.
  • Caparroy P., Carlotti F., 1996, A model for Acartia tonsa: effect of turbulence and consequences for the related physiological processes, J. Plankton Res., 18 (11), 2139–2177.
  • Carlotti F., Radach G., 1996, Seasonal dynamics of phytoplankton and Calanus finmarchicus in the North Sea as revealed by a coupled one-dimensional model, Limnol. Oceanogr., 41 (3), 522–539.
  • Carlotti F., Wolf K.U., 1998, A Lagrangian ensemble model of Calanus finmarchicus coupled with a 1-D ecosystem model, Fish. Oceanogr., 7 (3)–(4), 191–204.
  • Corkett C. J., McLaren I.A., 1978, The biology of Pseudocalanus, Adv. Mar. Biol., 15, 1–231.
  • Dower J., Miller T. J., Leggett W. C., 1997, The role of microscale turbulence in the feeding ecology of larval fish, Adv. Mar. Biol., 31, 169–220.
  • Dzierzbicka-Głowacka L., 2000, Mathematical modelling of the biological processes in the upper layer of the sea, Diss. and monogr., Inst. Oceanol. PAS, Sopot, 13, 124 pp., (in Polish).
  • Dzierzbicka-Głowacka L., 2004a, Growth and development of copepodite stages of Pseudocalanus spp, J. Plankton Res., 26 (1), 49–60.
  • Dzierzbicka-Głowacka L., 2004b, The dependence of body weight in copepodite stages of Pseudocalanus spp. on variations of ambient temperature and food concentration, Oceanologia, 46 (1), 45–63.
  • Dzierzbicka-Głowacka L., 2005, A numerical investigation of phytoplankton and Pseudocalanus elongatus dynamics in the spring bloom time in the Gdańsk Gulf, J. Marine Syst., 53 (1)–(4), 19–36.
  • Dzierzbicka-Głowacka L., Encounter rate in plankton, Pol. J. Environ. Stud., 15 (2), (in press).
  • Dzierzbicka-Głowacka L., Equivalence of rates of growth and egg production of Pseudocalanus, Ocean. Hydrobiol. Stud., 24 (4), 19–32, (in press).
  • Dzierzbicka-Głowacka L., Zieliński A., 1997a, Numerical studies of the influence of the nutrient regeneration mechanism on the chlorophyll a concentration in a stratified sea, Oceanologia, 39 (1), 55–82.
  • Dzierzbicka-Głowacka L., Zieliński A., 1997b, Numerical studies of the influence of the benthic detritus pool on the chlorophyll a concentration in a stratified sea, Oceanologia, 39 (4), 339–376.
  • Dzierzbicka-Głowacka L., Zieliński A., 2004, Potential rate of reproduction for some geographically separate populations of Pseudocalanus spp, Oceanologia, 46 (1), 65–83.
  • Dyke P.G., 2001, Coastal and shelf sea modelling, Kluwer Acad. Publ., Boston, 257 pp.
  • Ennet P., Kinnunen K., Tamsalu R., 1989, Ecosystem model FINEST, Valgus, Tallinn, 89 pp.
  • Evans G.T., 1989, The encounter speed of moving predator and prey, J. Plankton Res., 11, 415–417.
  • Fennel W., 2001, Modeling of copepods with links to circulation model, J. Plankton Res., 23 (11), 1217–1232.
  • Fennel W., Neumann T., 2003, Variability of copepods as seen in a coupled physical biological model of the Baltic Sea, ICES Mar. Sci. Symp., 219, 208–219.
  • Fey D.P., 2001, Differences in temperature conditions and somatic growth rate of larval and early juvenile spring-spawned herring from the Vistula Lagoon, Baltic Sea, manifested in the otolith to fish size relationship, J. Fish. Biol., 58 (8), 1257–1273.
  • Fonselius S.H., 1969, Hydrography of the Baltic deep basins. III. Fishery Board of Sweden, Ser. Hydrogr. Rep. No 23, 1–97.
  • Fransz H.G., Gonzalez S.R., Steeneken S. F., 1998, Metazoan plankton and the structure of the plankton community in the stratified North Sea, Mar. Ecol. Prog. Ser., 175, 191–200.
  • Fransz H.G., Mommaerts J., Radach G., 1991, Ecological modelling of the North Sea, Neth. J. Sea Res., 28 (1)–(2), 67–140.
  • Friedrich H. J., Kochergin V. P., Klimok V. I., Protasov A.V., Sukhorukov V.A., 1981, Numerical experiments for the model of the upper oceanic layer, Meteorol. Gidrol., 7, 77–85.
  • Isemer H.-J., 1998, Sea ice concentration at the Baltic Proper – A digital 1 data set for 1964 to 1995, Proc. 2nd Study Conf. BALTEX, Juliusruh, Island of Rugen, Germany, 25–29 May 1998, E. Raschke & H.-J. Isemer (eds.), Int. BALTEX Sec. Publ. Ser., 11, 78–79.
  • Jankowski A., Masłowski W., 1991, Methodological aspects of wind momentum, heat and moisture fluxes evaluation from the standard hydrometeorological measurements on board a ship, Stud. Mater. Oceanol., 58 (1), 63–76.
  • Jansson B., 1972, Ecosystem approach to the Baltic problem, Bull. Ecol. Res. Com. NFR, 16, 1–82.
  • Jędrasik J., Kowalewski M., 1993, Transport model of pollutants in the Gulf of Gdańsk, Stud. Mater. Oceanol., 64 (3), 61–75.
  • Kamada R. F., Flocchini R.G., 1986, Gaussian solar flux model, Sol. Energy, 36 (1), 73–87.
  • Kiørboe T., 1993, Turbulence, phytoplankton cell size, and the structure of pelagic food webs, Adv. Mar. Biol., 29, 1–72.
  • Kiørboe T., MacKenzie B.R., 1995, Turbulence-enhanced prey encounter rates in larval fish: effects of spatial scale, larval behaviour and size, J. Plankton Res., 17, 2319–2331.
  • Kiørboe T., Saiz E., 1995, Planktivorous feeding in calm and turbulent environmants with emphasis on copepods, Mar. Ecol. Prog. Ser., 122, 135–145.
  • Klein Breteler W.C.M., Gonzalez S.R., Schogt N., 1995, Development of Pseudocalanus elongatus (Copepoda, Calanoida) cultured at different temperature and food conditions, Mar. Ecol. Prog. Ser., 119, 99–110.
  • Kochergin V.P., 1987, Three-dimensional prognostic models, [in:] Three-dinensional Coastal Ocean Models, N. S. Heaps (ed.), Am. Geophys. Union, Coast. Estuar. Sci. Ser., 4, 201–208.
  • Krężel A., 1985, Solar radiation at the Baltic Sea surface, Oceanologia, 21, 5–32.
  • Large W.G., Pond S., 1981, Sensible and latent heat flux measurements over the ocean, J. Phys. Oceanogr., 12 (5), 464–482. Laurence G.C., 1985, A report on the development of stochastic models of foodlimited growth and survival in cod and haddocklar vae on Georges Bank, [in:] Growth and survival of larval fishes in relation to the trophodynamics of Georges Bankc od and haddock, G.C. Laurence & R. G. Lough (eds.), NOAA Tech. Mem., NMFS-F/NEC-36, 83–150.
  • Lehmann A., 1995, A three-dimensional baroclinic eddy-resolving model of the Baltic Sea, Tellus, 47 (A), 1013–1031.
  • MacKenzie B.R., Kiørboe T., 1995, Encounter rates and swimming behaviour of pause-travel and cruise larval fish predators in calm and turbulent laboratory environments, Limnol. Oceanogr., 40 (T), 1278–1289.
  • Margoński P., 2000, The abundance, growth rate and mortality of the early life stages of herring (Clupea harengus) and smelt (Osmerus eperlanus) in the Vistula Lagoon (southern Baltic Sea) during 1998–1999, ICES CM, N:21.
  • Marmefelt E., Lennart F., Ivarsson M., 2002, Final Environmental Status Report 2000 for the Baltic Sea, SMHI, [http://www.imr.no/morten/nocomments/publications/nowcast2000 Smhi.pdf].
  • McDonald J. E., 1960, Direct absorption of solar radiation by atmospheric water vapour, J. Meteorol., 17, 319–328.
  • Miller T. J., Crowder L.B., Rice J.A., Marschall E.A., 1988, Larval size and recruitment mechanisms in fishes: toward a conceptual framework, Can. J. Fish. Aquat. Sci., 45, 1657–1670.
  • Ołdakowski B., Renk H., 1997, The conception and structure of the production –destruction of organic matter model; verification tests for the Gulf of Gdańsk, Oceanol. Stud., 26 (4), 99–122.
  • Paffenhöfer G.A., 1971, Grazing and ingestion rates of nauplii, copepodids and adults of the marine planktonic copepod Calanus helgolandicus, Mar. Biol., 11, 286–298.
  • Paltridge G.W., Platt C.M.R., 1976, Radiative processes in meteorology and climatology, Elsevier, Amsterdam, 318 pp.
  • Parsons T.R., Tokahashi M., Hargrave B., 1977, Biological oceanographic processes, 2nd edn., Pergamon Press, Oxford, 332 pp.
  • Parsons T.R., Tokahashi M., Hargrave B., 1984, Biological oceanographic processes, 3rd edn., Pergamon Press, Oxford, 330 pp.
  • Peters H., Gregg M.C., Toole J.M., 1988, On the parametrization of equatorial turbulence, J. Geophs. Res., 93 (C2), 1199–1218.
  • Potter D., 1982, Computation physics, Vol. 1, Wiley, New York, 278 pp.
  • Radach G., Berg J., Heinemann B., Krause M., 1984, On the relation of primary production and herbivorous zooplankton grazing in the northern North Sea during FLEX’76, [in:] Flows of energy and materials in marine ecosystems, theory and practice, M. Fasham (ed.), NATO Conf. Ser. 4, Plenum Press, New York, 597–625.
  • Radach G., Moll A., 1993, Estimation of the variability of production by simulating annual cycles of phytoplankton in the central North Sea, Prog. Oceanogr., 31, 339–419.
  • Raymont J.E.G., 1980, Plankton and productivity in the oceans, Vol. 1. Phytoplankton, Pergamon Press, Oxford, 489 pp.
  • Renk H., Ochocki S., 1998, Photosynthetic rate and light curves of phytoplankton in the southern Baltic, Oceanologia, 40 (4), 331–344.
  • Riley G.A., 1946, Factors controlling phytoplankton populations on Georges Bank, J. Mar. Res., 6, 54–73.
  • Rothschild B. J., Osborn T.R., 1988, Small-scale turbulence and plankton contact rates, J. Plankton Res., 10 (3), 465–474.
  • Rozwadowska A., 1991, A model of solar energy input into the Baltic Sea, Stud. Mater. Oceanol., 59 (6), 223–242.
  • Rozwadowska A., Isemer H.-J., 1998, Solar radiation fluxes at the surface of the Baltic Proper. Part 1. Mean annual cycle and influencing factors, Oceanologia, 40 (4), 307–330.
  • Ryther J.H., 1956, Photosynthesis in the ocean as a function of light intensity, Limnol. Oceanogr., 1 (1), 61–70.
  • Savchuk O., Kolodochka A., Gutsabbath E., 1988, Simulation of the matter cycle in the Baltic Sea ecosystem, Proc. 16th Conf. Baltic Oceanogr, Kiel, 921–931.
  • Seuront L., Schmitt F., Lagadeuc Y., 2001, Turbulence intermittency, small-scale phytoplankton patchiness and encounter rates in plankton: where do we go from here?, Deep-Sea Res. Pt. I, 48 (5) 1199–1215.
  • Sjöberg S., 1980, A mathematical and conceptual frameworkfor models of the pelagic ecosystem of the Baltic Sea, [in:] Formulations and exploratory simulations, Stockholm Univ., Stockholm, 27 pp.
  • Steele J.H., 1974, The structure of marine ecosystems, Harvard Univ. Press, Cambridge, 128 pp.
  • Steele J.H., Mullin M. M., 1977, Zooplankton dynamics, [in:] The sea, E.D. Goldberg, I.N. McCave, J. J. O’Brien & J. H. Steele (eds.), Intersci. Publ., New York, 6, 857–887.
  • Stigebrandt A., Wulff F., 1987, A model for the dynamics of nutrients and oxygen in the Baltic Proper, J. Mar. Res., 45, 729–759.
  • Sundby S., Fossum P., 1990, Feeding conditions of Arcto-Norwegian cod larvae compared to the Rothschild-Osborn theory on small-scale turbulence and plankton contact rates, J. Plankton Res., 12 (6), 1153–1162.
  • Svansson A., 1996, A diffusion model for the primary production of phytoplankton, Deep-Sea Res. Pt. II, 43 (1), 37–46.
  • Tamsalu R. (ed.), 1998, Coupled 3D hydrodynamic and ecosystem model FinEst, FIMR, Finn. Inst. Mar. Res., Rap. No 35, Helsinki, 166 pp.
  • Tamsalu R., Ennet P., 1995, Ecosystem modelling in the Gulf of Finland. II. The aquatic ecosystem Model FINEST, Estuar. Coast. Shelf Sci., 41 (4), 429–458.
  • Woźniak B., Pelevin V.N., 1991, Optical classifications of the seas in relation to phytoplankton characteristics, Oceanologia, 31, 25–55.
  • Woźniak S.B., Zapadka T., Woźniak B., 2001, Comparison between various formulae for sea surface net long-wave radiation flux and a new empirical formula for the southern Baltic region, Proc. 3rd Study BALTEX Conf., Aaland Islands (Finland), 2–6 July 2001, Int. BALTEX Secret., GKSS Res. Center., Geesthacht, 257–258.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-de3ff775-5d7b-4fb6-b89c-e90449f57795
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.