Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 18 | 4 |

Tytuł artykułu

Vegetation of reclaimed and spontaneously vegetated Zn-Pb mine wastes in Southern Poland

Warianty tytułu

Języki publikacji



In 2004, soil properties and the species composition of vascular plants and lichens were studied at five sites in a former zinc and lead mining region (Olkusz region, southern Poland). The sampled sites, four reclaimed by planting trees differed in age (5, 15, 30, 35 years old), and one spontaneously vegetated (100 years old). The sites were similar in soil structure and chemical composition. These were skeletal soils poor in N and P, and rich in Ca, Mg, Zn, Pb and Cd. The 100-year vegetation which has developed there spontaneously is represented by grasslands formed mostly by species of open, dry, warm, calcareous and metalliferous habitats, with a numerous group of lichens. On sites with planted trees, the herb layer plants appeared as the result of spontaneous colonization. In the herb layer of younger sites there were species typical of spontaneously developed grassland. Older sites harbored fewer grassland species but also included shade-tolerant meadow species. Expansion of trees caused the disappearance of species characteristic of metalliferous waste habitats. Though tree planting accelerates the formation of plant cover in post-mining areas, it is not conducive to the maintenance of the specific composition of local plant species. Spontaneous development of local vegetation seems an appropriate way to rehabilitate at least part of post-mining areas with regard to the maintenance of the vegetation typical for the metalliferous soils. Islands of such vegetation increase the biodiversity of degraded areas.








Opis fizyczny



  • Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland


  • 1. TORDOFF G.M., BAKER A.J., WILLIS A.J. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 41, 219, 2000.
  • 2. MARTINEZ-RUIZ C., MARRS R.H. Some factors affecting successional change on uranium mine wastes: Insights for ecological restoration. Appl. Veg. Sci., 10, 333, 2007.
  • 3. WIERZBICKA M., ROSTAŃSKI A. Microevolutionary changes in ecotypes of calamine waste heap vegetation near Olkusz, Poland. A review. Acta Biol. Crac. Ser. Bot., 44, 7, 2002.
  • 4. LISZKA J., ŚWIĆ E. Bolesław Mining and Smelting Works. History–facts–people. Zakłady Gorniczo-Hutnicze “Bolesław”, Bukowno, 2004.
  • 5. CARTER M.R. Soil sampling and methods of analysis. Canadian Society of Soil Science, Lewis Publisher, Ann Arbor, 1993.
  • 6. MIREK Z., PIĘKOŚ-MIRKOWA H., ZAJĄC A., ZAJĄC M. Flowering plants and pteridophytes of Poland. A checklist. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 2002.
  • 7. BIELCZYK U. The lichens and allied fungi of the Polish Carpathians – an annotated checklist. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 2002.
  • 8. ZARZYCKI K., TRZCIŃSKA-TACIK H., ROŻAŃSKI W., SZELĄG Z., WOŁEK J., KORZENIAK U. Ecological indicator values of vascular plants of Poland. Wydawnictwo Instytutu Botaniki PAN im. W. Szafera, Krakow, 2002.
  • 9. WILDI O., ORLÓCI L. Numerical exploration of community patterns. SPB Academic Publishing, The Hague, 1990.
  • 10. LEPS J., SMILAUER P. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, 2003.
  • 11. DUDKA S., The estimation of total element concentrations in surface soils of Poland.. IUNG Puławy, Seria R 293, 1, 1992 [In Polish].
  • 12. BROWN G. The heavy-metal vegetation of north-western mainland Europe. Bot. Jahrb. Syst., 123, 63, 2001.
  • 13. PRASAD M.N.V. Heavy metal stress in plants. From molecules to ecosystems. Springer, Berlin, Tokyo, 2004.
  • 14. SZAREK-ŁUKASZEWSKA G., NIKLIŃSKA M. Concentration of alkaline and heavy metals in Biscutella laevigata L. and Plantago lanceolata L. growing on calamine spoils (S Poland). Acta Biol. Crac. Ser. Bot., 44, 29, 2002.
  • 15. BRADY N.C., WEIL R.R. eds. Elements of the nature and properties of soils. Second edition. Pearson Prentice Hall, Upper Saddle River, New Jersey, 2004.
  • 16. ALVAREZ E., FERNANDEZ MARCOS M.L., VAAMONDE C., FERNANDEZ-SANJURIO M.J. Heavy metals in the dump of abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation. Sci. Total Environ., 313, 185, 2003.
  • 17. SHU W.S., YE Z.H., ZHANG Z.O., LAN C.Y., WONG M.H. Natural colonization of plants on five lead/zinc mine tailings in Southern China. Restor. Ecol., 13, 49, 2005.
  • 18. NIKLIŃSKA M., CHODAK M., LASKOWSKI R. Ecological methods for effect of soil pollution. Agencja Wydawnicza Poligrafia, Krakow, pp. 63-77, 2005 [In Polish].
  • 19. WALI M.K. Ecological succession and the rehabilitation of disturbed terrestrial ecosystems. Plant Soil, 213, 195, 1999.
  • 20. STROM L., OWEN A.G., GODBOLD D.L., JONES D.L. Organic acid behavior in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol. Biochem., 37, 2046, 2005.
  • 21. SHENOY V.V., KALAGUDI G.M. Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol. Adv., 23, 501, 2005.
  • 22. PAWŁOWSKA T.E., BŁASZKOWSKI J., RUHLING A. The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6, 499, 1996.
  • 23. ERNST W.H.O. Schwermetallvegetation der Erde. Geobotanica selecta 5. Gustav Fischer Verlag, Stuttgart, 1974.
  • 24. DOBRZAŃSKA J. Flora and ecological studies on calamine flora in the district of Bolesław and Olkusz. Acta Soc. Bot. Pol., 24, (2), 357, 1955 [In Polish].
  • 25. GRODZIŃSKA K., KORZENIAK U., SZAREK-ŁUKASZEWSKA G., GODZIK B. Colonization of zinc mine spoils in southern Poland – preliminary studies on vegetation seed rain, and seed bank. Fragm. Flor. Geobot., 45, (1-2), 123, 2000.
  • 26. MILL W. Dynamic modelling of Polish forest soil response to changes in atmospheric acid deposition. Environment Protection Engineering, Wroclaw University of Technology Press, 3, 39, 2007.
  • 27. BERG B., LASKOWSKI R. Litter decomposition. A guide to carbon and nutrient turnover, Ecol. Res. pp. 38, 2006.
  • 28. PRACH K., PYSEK P. Using spontaneous succession for restoration of human-disturbed habitats. Experience from Central Europe, Ecol. Eng., 17, 55, 2001.
  • 29. SINGH A.N., RAGHUBANSHI A.S., SINGH, J.S. Plantation as a tool for mine spoil restoration. Current Sci., 82, (12), 1436, 2002.
  • 30. MARRS R.H., BRADSHOW A.D. Primary succession on man-made wastes. The importance of resource acquisition. In: Primary succession on land, Miles J., Walton D.W.H. (eds.). Special Publication number f the British Ecological Society, Blackwell Scientific Publications, London,Vienna, pp. 221-248, 1993.
  • 31. KOMPAŁA-BĄBA A., BŁOŃSKA A., BĄBA W., CZYBA M. Grasses in plant communities which develop on the waste sites of zinc-lead industry (Upper Silesia, S Poland). In: Biology of grasses, Frey, L. (ed.). W.Szafer Institute of Botany, Polish Academy of Sciences, Krakow, pp. 269-281, 2005.
  • 32. CUNY D., DENAYER F.O., DE FOUCAULT B., SCHUMACKER R., COLEIN P., VAN HALUWYN C. Pattern of metal soil contamination and changes in terrestrial cryptogamic communities. Environ. Pollut., 129, 289, 2004.
  • 33. ERNST W.H.D., KNOLLE F., KRATZ S., SCHNUNG E. Aspects of ecotoxicology and heavy metals in Harz region –a guided excursion. Landbauforschung Volkendrode 2, 53, 2004.
  • 34. PURVIS O.W., HALLS C. A review of lichens in metalenriched environment. Lichenologist, 28, 571, 1996.
  • 35. OLKO A., ABRATOWSKA A., ŻYŁKOWSKA J., WIERZBICKA M., TUKIENDORF A. Armeria maritima from a calamine heap. Initial studies on physiologic-metabolic adaptations to metal-enriched soil. Ecotoxicol. Environ. Saf., 69, 209, 2008.
  • 36. SZAREK-ŁUKASZEWSKA G., SŁYSZ A., WIERZBICKA M. The response of Armeria maritima (Mill.) to Cd, Zn and Pb. Acta Biol. Crac. Ser. Bot., 46, 19, 2004.
  • 37. WIERZBICKA M., PANUFNIK D. The adaptation of Silene vulgaris to the growth on a calamine waste heap (S Poland). Environ. Pollut., 101, 415, 1998.
  • 38. WIERZBICKA M., PIELICHOWSKA M. Adaptation of Biscutella laevigata L., a metal hyperaccumulator, to growth on a zinc-lead waste heap in southern Poland. I: Differences between waste-heap and mountain populations. Chemosphere, 54, 1663, 2004.
  • 39. ZAŁĘCKA R., WIERZBICKA M. The adaptation of Dianthus carthusianorum L. (Caryophyllaceae) to growth on a zinc-lead heap in southern Poland. Plant Soil, 246, 249, 2002.
  • 40. DICKINSON N. M. Strategies for sustainable woodland on contaminated soils. Chemosphere, 41, 259, 2000.
  • 41. PULFORD I.D., WATSON C. Phytoremediation of heavy metal-contaminated land by trees – a review. Environ. Int., 29, 529, 2003.
  • 42. AUGUSTO L., RANGER J., BINKLEY D., ROTHE A. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 59, 233, 2002.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.