For targeted drug delivery a variety of protector or carrier systems has been developed. One of the promising approaches uses liposomes, which may be partially directed toward particular types of cells by means of antibodies or other ligands. We have proposed recently a new method for drug targeting based on magnetoliposomes, which are liposomes with subdomain magnetite (Fe3O4) particles with a diameter of ≈10 nm incorporated in their bilayers. Due to their magnetic sensitivity a non-homogeneous magnetic field may be used for the targeting of magnetoliposomes to a given tissue. Because magnetite particles are strong microwave absorbers we have experimentally analyzed the influence of microwave radiation with a frequency of 2.45 GHz on the permeability of phosphatidylcholine magnetoliposomes. We have found for example that microwave radiation with specific absorbed power of 400 mW/g almost completely releases entrapped 6-carboxy-fluorescein in 15 min. The probable underlying mechanism is heating of Fe3O4 particles which leads to a perforation of lipid bilayers and subsequent leakage of entrapped magnetoliposome volume, so microwave radiation may be used for controllable release of drugs at low doses of microwave radiation intensities as compared with conventional microwave hyperthermia used previously by other authors.