PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 08 | 2 |

Tytuł artykułu

Visual and archaeal rhodopsins: similarities, differences and controversy

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Rhodopsins are currently known to belong to two distinct protein families. The visual rhodopsins, found in eyes throughout the animal kingdom, are photosensory pigments. Archaeal rhodopsins, found in extreme halophiles, function as light-driven proton pumps (bacteriorhodopsins), chloride ion pumps (halorhodopsins), or photosensory receptors (sensory rhodopsins). Light absorption by rhodopsins triggers their characteristic photoconversion extending into the (milli)second time range. There are three main paradigms of rhodopsins photoconversion. (1) Initiation of the trans-cis isomerization is the very primary consequence of light absorption. (2) Rhodopsins store light energy via the charge-separation mechanism (the charge of Schiff base is separated from its counterion). (3) Full trans-cis isomerization of the chromophore is a prerequisite for the full biological activity of rhodopsins. These paradigms will be questioned.

Wydawca

-

Rocznik

Tom

08

Numer

2

Opis fizyczny

p.285-296,fig.

Twórcy

autor
  • University of Warmia and Mazury, 10-719 Olsztyn, Poland

Bibliografia

  • 1.Spudich, J.L., Yang, Ch.-S., Jung, K.-H. and Spudich, E.N. Retinylidene proteins: structures and functions from Archaea to Humans. Annu. Rev. Cell Dev. Biol. 16 (2000) 365-392.
  • 2.Lanyi, J.K. Bacteriorhodopsin. Int. Rev. Cytology 187 (1999) 161-202.
  • 3.Essen, L.-O. and Oesterhelt, D. A cold break for photoreceptors. Nature 392 (1998) 131-133.
  • 4.Mathies, R.A., Lin, S.W., Ames, J.B. and Pollard, W.T. From femtoseconds to biology: Mechanism of bacteriorhodopsin’s light-driven proton pump. Annu. Rev. Biophys. Biophys. Chem. 20 (1991) 491-518.
  • 5.Hayashi, S., Tajkhorshid, E. and Schulten, K. Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle. Biophys. J. 83 (2002) 1281-1297.
  • 6.Warshel, A., Chu, Z.T. and Hwang, J.-K. The dynamics of the primary event in rhodopsins revisited. Chem. Phys. 158 (1991) 303-314.
  • 7.Lanyi, J.K. Bacteriorhodopsin: a paradigm for proton pumps? Biophys. Chem. 56 (1995) 143-151.
  • 8.Mathies, R.A., Cruz, C.H.B., Pollard, W.T. and Shank, Ch.V. Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science 24 (1988) 777-779.
  • 9.Atkinson, G.H., Ujj, L. and Zhou, Y. Vibrational spectrum of the J-625 intermediate in the room temperature bacteriorhodopsin photocycle. J. Phys. Chem. A 104 (2000) 4130-4139.
  • 10.Herbst, J., Heyne, K. and Diller, R. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Science 297 (2002) 822-825.
  • 11.Warshel, A., Chu, Z.T. and Hwang, J.-K. The dynamics of the primary event in rhodopsins revisited. Chem. Phys. 158 (1991) 303-314.
  • 12.Birge, R.R. and Cooper, T.M. Energy storage in the primary step of the photocycle of bacteriorhodopsin. Biophys. J. 42 (1983) 61-69.
  • 13.Warshel, A. and Barboy, N. Energy storage and reaction pathways in the first step of the vision process. J. Am. Chem. Soc. 104 (1982) 1469-1476.
  • 14.Honig, B., Ebrey, T., Callender, R.H., Dinur, U. and Ottolenghi, M. Photoisomerization, energy storage, and charge separation: a model for light energy transduction in visual pigments and bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 76 (1979) 2503-2507.
  • 15.Pollard, W.T., Cruz, C.H.B., Shank, Ch. and Mathies, R.A. Direct observation of the excited-state cis-trans photoisomerization of bacteriorhodopsin: M ultilevel line shape theory for femtosecond dynamic hole burning and its application. J. Chem. Phys. 90 (1989) 199-208.
  • 16.Kobayashi, T., Terauchi, M., Kouyama, T., Yoshizawa, M. and Taiji, M. Femtosecond spectroscopy of acidified and neutral bacteriorhodopsin. SPIE 1403 (1991) 407-416.
  • 17.Kobayashi, T., Saito, T. and Ohtani, H. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 414 (2001) 531-534.
  • 18.Song, L. and El-Sayed, M.A. Primary step in bacteriorhodopsin photosynthesis: Bond stretch rather than angle twist of its retinal excited-state structure. J. Am. Chem. Soc. 120 (1998) 8889-8890.
  • 19.Patzelt, H., Simon, B., terLaak, A., Kessler, B., Kuhne, R., Schmieder, P., Oesterhelt, D. and Oschkinat, H. The structures of the active center in dark adapted bacteriorhodopsin by solution-state NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 99 (2002) 9765-9770.
  • 20. Taiji, M„ Bryl, K., Sekiya, N., Yoshihara, K., Kobayashi, T. Femtosecond absorption studies of 14-fluorobacteriorhodopsin. In: Ultrafast processes in spectroscopy (Laubereau, A. and Seilmeier, A., Eds), IOP Publishing Ltd, Bristol, England, 1992, 595-598.
  • 21. Warshel, A. Charge stabilization mechanism in the visual and purple membrane pigments. Proc. Natl. Acad. Sci. USA 75 (1978) 2558-2562.
  • 22. Warshel, A. Conversion of light energy to electrostatic energy in the proton pump of Halobacterium halobium. Photochem. Photobiol. 30 (1979) 285- 290.
  • 23. Lewis, A. The molecular mechanism of excitation in visual transduction and bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 75 (1978) 549-553.
  • 24. Aharoni, A., Hou, B., Friedman, N., Ottolenghi, M., Rousso, I., Ruhman, S., Sheves, M., Ye, T. and Zhong, Q. Non-isomerizable artificial pigments: implications for the primary light-induced events in bacteriorhodopsin. Biochemistry (Moscow) 66 (2001) 1210-1219.
  • 25. Houjou, H., Inoue, Y. and Sakurai, M. Houjou, H., Inoue, Y. and Sakurai, M. Study of the opsin shift of bacteriorhodopsin: insight from QM/MM calculations with electronic polarization effect of the protein environment. J. Phys. Chem. B, 105 (2001) 867-879.
  • 26. Hasson, K.C., Gai, F. and Anfinrud, P.A. The photoisomerization of retinal in bacteriorhodopsin: experimental evidence for a three-state model. Proc. Natl. Acad. Sci. USA 93 (1996) 15124-15129.
  • 27. Khorana, H.G. Two light-transducing membrane proteins: mammalian rhodopsin and bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 90 (1993) 1166-1171.
  • 28. Weiss, R.M. and Warshel, A. A new view of the dynamics of singlet cis-trans photoisomerization. J. Am. Chem. Soc. 101 (1979) 6131-6133.
  • 29. Schertler, G.F.X., Villa, C. and Henderson, R. Projection structure of rhodopsin. Nature 362 (1993) 770-772.
  • 30. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. and Miyano, M. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289 (2000) 739-745.
  • 31. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J.P. and Landau, E.M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phase. Science 277 (1997) 1676-1681.
  • 32. Nakagawa, M., Iwasa, T., Kikkawa, S., Tsuda, M. and Ebrey, T.G. How vertebrate and invertebrate visual pigments differ in their mechanism of photoactivation. Proc. Natl. Acad. Sci. USA 96 (1999) 6189-6192.
  • 33. Taiji, M., Bryl, K., Nakagawa, M., Tsuda, M., Kobayashi, T. Femtosecond studies of primary photoprocesses in octopus rhodopsin. Photochem. Photobiol. 56 (1992) 1003-1011.
  • 34.Zhong, Q., Ruchman, S., Ottolenghi, M., Sheves, M., Friedman, N., Atkinson, G.H. and Delaney, J.K. Reexamining the primary light-induced events in bacteriorhodopsin using a synthetic C13=C14-Locked chromophore. J. Am. Chem. Soc. 118 (1996) 12828-12829.
  • 35.Ye, T., Friedman, N., Gat, Y., Atkinson, G.H., Sheves, M., Ottolenghi, M. and Ruchman, S. On the nature of the primary light-induced events in bacteriorhodopsin: ultrafast spectroscopy of native and C13=C14 locked pigments. J. Phys. Chem. B 103 (1999) 5122-5130.
  • 36.Bryl, K. and Yoshihara, K. Implications of proton retarded transfer from purple membrane into the aqueous bulk phase for energy-coupling theories. Eur. Biophys. J. 26 (1997) 100.
  • 37.Bryl, K. and Yoshihara, K. ATP synthesis by F0F1-ATPase co-reconstituted with purple or brown membranes into liposomes. Biochim. Biophys. Acta EBEC Short Reports 10 (1998) 44.
  • 38.Mizukami, T., Kandori, H., Shichida, Y., Chen, A-H., Derguini, F., Caldwell, Ch.G., Bigge, Ch., Nakanishi, K. and Yoshizawa, T. Photoisomerization mechanism of the rhodopsin chromophore: picosecond photolysis of pigment containing 11-cis-locked eight-membered ring retinal. Proc. Natl. Acad. Sci. USA 90 (1993) 4072-4076.
  • 39.Jang, G-F., Kuksa, V., Filipek, S., Bartl, F., Ritter, E., Gelb, M.H., Hofmann, K.P. and Palczewski, K. Mechanism of rhodopsin activation as examines with ring-constrained retinal analogues and the crystal structure of the ground state protein. J. Biol. Chem. 276 (2001) 26148-26153.
  • 40.Kuksa, V., Bartl, F., Maeda, T., Jang, G-F., Ritter, E., Heck, M., Van Hooser, J.P., Liang, Y., Filipek, S., Gelb, M.H., Hofmann, K.P. and Palczewski, K. Biochemical and physiological properties of rhodopsin regenerated with 11-cis-6-Ring- and 7-Ring-retinals. J. Biol. Chem. 277 (2002) 42315-42324.
  • 41.Bartl, F.J., Ritter, E. and Hofmann, K.P. Signaling states of rhodopsin. Absorption of light in active metarhodopsin II generates an all-trans-retinal bound inactive state. J. Biol. Chem. 276 (2001) 30161-30166.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-dac41d2c-2fcc-40d8-8ed4-a0546ffa9a6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.