PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 45 | 2 |

Tytuł artykułu

Processing of sphingolipid activator proteins and the topology of lysosomal digestion

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Plasma membrane derived glycosphingolipids (GSLs) destined for digestion are internalized through the endocytic pathway and delivered to the lysosomes. There, GSLs are degraded by the action of exohydrolases, which are supported, in the case of GSLs with short oligosaccharide chains, by sphingolipid activator proteins (SAPs). Four of the SAPs, SAP-A to -D (also called saposins) are synthesized from a single precursor protein (pSAP). Intracellular routing of pSAP and of the GM2 activator protein is only in part dependent on mannose-6-phosphate residues. Their endocytosis occurs in a carbohydrate-independent manner. The inherited deficiencies of individual activators, the GM2 activator, SAP-B, and SAP-C, as well as the deficiency of the precursor pSAP give rise to different, neuronal, white matter or visceral sphingolipid storage diseases. The analysis of cultured fibroblasts from corresponding patients suggests a new model for the topology of endocytosis and lysosomal digestion. It supports the hypothesis that endocytosis of plasma membrane-derived lipids occurs via small intraendosomal and intralysosomal vesicles and membrane structures, that are then digested within the lysosomes. In combined activator protein deficient cells nondegradable GSLs on the surface of intralysosomal vesicles protect them against lysosomal digestion. Mice with disrupted genes for activator proteins (SAP precursor -/-, GM2A -/-) as well as disrupted genes for ganglioside GM2 degrading hexosaminidases (HEXA -/-, HEXB -/-) turned out to be useful models for known human diseases whereas double knock out mice (HEXA -/- and HEXB -/-) show a new phenotype of both mucopolysaccharidosis and gangliosidosis.

Wydawca

-

Rocznik

Tom

45

Numer

2

Opis fizyczny

p.373-384,fig.

Twórcy

autor
autor

Bibliografia

  • Bradova, V., Smid, F., Ulrich-Bott, B., Roggendorf, W., Paton, B.C. & Harzer, K. (1993) Prosa- posin deficiency: Further characterization of the sphingolipid activator protein-deficient sibs. Multiple glycolipid elevations (including lactosylceraraidosis), partial enzyme deficien­cies and ultrastructure of the skin in this gen­eralized sphingolipid storage disease. Hum. Genet. 92, 143-152.
  • Braulke, T. (1996) Origin of lysosomal proteins; in Subcellular Biochemistry (Lloyd, I.B. & Mason, R.W., eds.) vol. 27, Biology of the Lysosome, pp. 15-49, Plenum Press, New York.
  • Burkhardt, J.K., Hüttler, S., Klein, A., Möbius, W., Habermann, A., Griffiths, G. & Sandhoff, K. (1997) Accumulation of sphingolipids in SAP- precursor (prosaposin) deficient fibroblasts occurs as intralysosomal membrane struc­tures and can be completely reversed by treat­ment with human SAP-precursor. Eur. J. Cell Biol 73, 10-18.
  • Carlsson, S.R., Roth, J., PUler, F. & Fukuda, M. (1988) Isolation and characterization of hu­man lysosomal membrane glycoproteins, h- lamp-1 and h-lamp-2. J. Biol Chem.. 263, 18911-18919.
  • Christomanou, H., Aignesberger. A. & Linke. R.P. (1986) Immunochemical characterization of two activator proteins stimulating enzymic sphingomyelin degradation in vitro-Absence of one of them in a human Gaucher disease variant. Biol. Chem. Hoppe-Seyler 367, 879-890.
  • Conzelmann, E., Burg, J., Stephan, G. & Sand- hoff, K. (1982) Complexing of glycolipids and their transfer between membranes by the acti­vator protein for degradation of lysosomal ganglioside &un J- Biochem. 123, 455- 464.
  • von Figura, K., Hasilik, A. (1986) Lysosomal en­zymes and their receptors. Annu Rev. Bio­chem. 55, 167-193.
  • Fujibayashi, S. & Wenger, D.A. (1986). Biosynthe­sis of the sulfatide/GMl activator protein (SAP-1) in control and mutant cultured skin fi­broblasts. Biochim. Biophys. Acta 875, 554-562.
  • Fujita, N., Suzuki, K., Vanier, M.T., Popko, B., Maeda, N., Klein, A., Henseler, M., Sandhoff, K., Nakayasu, H. & Suzuki, K. (1996) Targeted disruption of the mouse sphingolipid activator protein gene: A complex phenotype, including severe leukodystrophy and wide-spread stor­age of multiple sphingolipids. Hum. Mol Genet. 5, 711-725.
  • Fürst, W. & Sandhoff, K. (1992) Activator pro­teins and topology of lysosomal sphingolipid catabolism. Biochim. Biophys. Acta 1126, 1-16.
  • Fürst, W., Machleidt, W. & Sandhoff, K. (1988) The precursor of sulfatide activator protein is processed to three different proteins. Biol Chem. Hoppe-Seyler 369, 317-328.
  • Fürst, W., Schubert, J., Machleidt, W., Meyer, E.H. & Sandhoff, K. (1990) The complete amino-acid sequences of human ganglioside GM2 activator protein and cerebroside sulfate activator protein. Eur. J. Biochem. 192. 709-714.
  • Glombitza, G.J., Becker, E., Kaiser, H.W. & Sand- hoff, K. (1997) Biosynthesis, processing, and intracellular transport of GM2 activator pro­tein in human epidermal keratinocytes. The ly­sosomal targeting of the GM2 activator is in­dependent of a mannose-6-phosphate signal. J. Biol Chem. 272, 5199-5207.
  • Gravel, R.A., Clarke, J.T.R., Kaback, M.M., Mahu- ran, D., Sandhoff, K. & Suzuki, K. (1995) The GM2 ganglisidoses; in The Metabolic and Mo­lecular Basis of Inherited Disease (Scriver, C., Beaudet. A.L.. Sly. W.S. & Valle. D.. eds.) pp. 2839-2879, McGraw-Hill.
  • Griffiths, G.W., Hoflack, B., Simons, K., Mellman, I.S. & Kornfeld, S. (1988) The mannose-6- phosphate receptor and the biogenesis of lyso- somes. Cell 52, 329-341.
  • Hahn, C.N., del Pilar, M., Schroder, M., Vanier, M.T., Hara, Y., Suzuki, K., Suzuki, K. & d'Azzo, A. (1997) Generalized CNS disease and massive G(Ml)-ganglioside accumulation in mice defective in lysosomal acid beta- galactosidase. Hum. Mol Genet. 6, 205-211.
  • Hakomori, S. (1991) Glycosphingolipids in cellular interactions, differentiation and oncogenesis. Anna. Rev. Biochem. 50, 733-764.
  • Harzer, K., Paton, B.C. & Poulos, A. (1989) Sphin- golipid activator protein (SAP) deficiency in a 16-week old atypical Gaucher disease patient and his fetal sibling; biochemical signs of com­bined sphingolipidoses. Eur. J. Pediatr. 149, 31-39.
  • Ho, M.W. & O'Brien, J.S. (1971) Gaucher's Dis­ease: Deficiency of 'acid' beta-glucosidase and reconstitution of enzyme activity in vitro. Proc. Natl Acad. Sci. U.S.A. 68. 2810-2813.
  • Holmgren, J., Lonnroth, I., Mansson, J.-E. & Sven- nerholm, L. (1975) Interaction of cholera toxin and membrane GMl ganglioside of small in­testine. Proc. Natl. Acad. Sci. U.S.A. 72, 2520-2524.
  • Karlsson, K.-A. (1989) Animal glycosphingolipids as membrane attachment sites for bacteria. Annu. Rev. Biochem. 58. 309-350.
  • Klein, A., Hense'.er, M., Klein, C., Suzuki, K., Har­zer, K. & Sandhoff, K. (1994) Sphingolipid ac­tivator Protein D (sap-D) stimulates the lysoso­mal degradation of ceramide in vivo. Biochem. Biophys. Res. Commun. 200, 1440-1448.
  • Klima, H., Klein, A., van Echten, G., Schwarz- mann, G., Suzuki, K. & Sandhoff, K. (1993) Over-expression of a functionally active hu­man G^-activator protein in Escherichia coli. Biochem. J. 292, 571-576.
  • Kornfeld, S. & Mellman, I. (1989) The biogenesis of lysosomes. Annu. Rev. Cell. Biol. 5, 483-525.
  • Koval, M. & Pagano, R.E. (1989) Lipid recycling between the plasma membrane and intracellu­lar compartments: Transport and metabolism of fluorescent sphingomyelin analogues in cul­tured fibroblasts. J. Cell Biol. 108,2169-2181.
  • Kytzia, H.-J. & Sandhoff, K. (1985) Evidence for two different active sites on human hexo- saminidase-interaction of G^ activator pro­tein with hexosaminidase A. J. Biol Chem. 260, 7568-7572.
  • Li, S.-C., Sonnino, S., Tettamanti, G. & Li, Y.-T. (1988) Characterization of a nonspecific acti­vator protein for the enzymatic hydrolysis of glycolipids. J. Biol Chem. 263, 6588-6591.
  • Liu, Y., Hoffmann, A., Grinberg, A., Westphal, H., McDonald, M.P., Miller, K.M., Crawley, J.N., Sandhoff, K., Suzuki, K. & Proia, R.L. (1997) Mouse model of G^2 activator deficiency manifests cerebellar ganglioside storage and motor impairment. Proc. Natl Acad. Sci. U.S.A. 94, 8138-8143.
  • Markwell, M.A.K., Svennerholm, L. & Paulson, J.C. (1981) Specific gangliosides function as host cell receptors for Sendai virus. Proc. Natl Acad. Sei. U.S.A. 78, 5406-5410.
  • Mehl. E. & Jatzkewitz, H. (1964) Eine Cerebrosid- sulfatase aus Schweineniere. Hoppe-Seyler's Z. Physiol Chem. 339, 260-276.
  • Meier, E.M., Schwarzmann, G., Fürst, W. & Sand­hoff, K. (1991) The human G^2 activator pro­tein: A substrate specific cofactor of ß-hexo- saminidase A.J. Biol Chem. 266,1879-1887.
  • Nagai, Y. & Iwamori, M. (1995) Cellular biology of gangliosides; in Biology of the Sialic Acids (Ro­senberg, A., ed.) pp. 197-241, Plenum Press, New York.
  • Nakano, T., Sandhoff, K., Stümper, J., Christoma- nou, H. & Suzuki, K. (1989) Structure of full- length cDNA coding for sulfatide activator, a co-beta-glucosidase and two other homologous proteins: Two alternate forms of the sulfatide activator.J. Biochem. 105, 152-154.
  • O'Brien, J.S., Kretz, K.A., Dewji, N., Wenger, D.A., Esch, F. & Fluharty, A.L. (1988) Coding of two sphingolipid activator proteins (SAP-1 and SAP-2) by same genetic locus. Science 241, 1098-1101.
  • Phillips, M.L., Nudelman, E., Gaeta, F.C.A., Perez, M., Singhai, A.K., Hakomori, S. & Paulson, J.C. (1990) ELAM 1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl- Lex. Science 250, 1130-1132.
  • Platt, F.M., Neises, G.R., Reinkensmeier, G., Townsend, M.J., Perry, V.H., Proia, R.L., Win­chester, B., Dwek, R.A. & Butters. T.D. (1997) Prevention of lysosomal storage in Tay-Sachsmice treated with N-buty 1 deoxynojirimycin. Science 276, 428-431.
  • Sandhoff, K. & Kuller, T. (1996) Topology of gly- cosphingolipid degradation. Trends Cell Biol 6, 98-103.
  • Sandhoff, K., Conzelmann, E., Neufeld, E., Ka- back, M.M. & Suzuki, K. (1989) The GM2 gangliosidoses; in The Metabolic Basis of Inher­ited Disease (Scriver, C., Beaudet, A.L., Sly, W. S., Valle, D., eds.) pp. 1807-1839, McGraw- Hill.
  • Sandhoff, K., Harzer, K. & Fürst, W. (1995) Sphin­golipid Activator Proteins; in The Metabolic and Molecular Basis of Inherited Disease (Scriver, C., Beaudet, A.L., Sly, W.S. & Valle, D., eds.) pp. 2427-2441, McGraw-Hill.
  • Sango, K., Yamanaka, S., Hoffmann, A., Okuda, Y., Grinberg, A., Westphal, H., McDonald, M.P., Crawley, J.N., Sandhoff, K., Suzuki, K. & Proia, R.L. (1995) Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Na­ture Genetics 11, 170-176.
  • Sango, K., McDonald, M.P., Crawley, J.N., Mack, M.L., Tifft, C.J., Skop, E.f Starr, C.M., Hoff­mann, A., Sandhoff, K., Suzuki, K. & Proia, R.L. (1996) Mice lacking both subunits of lyso­somal beta-hexosaminidase display gangliosi­dosis and mucopolysaccharidosis. Nature Ge­netics 14, 348-352.
  • Schepers, U., Glombitza, G.J., Lemm, T., Hoff­mann, A., Chabäs, A., Ozand, P. & Sandhoff, K. (1996) Molecular analysis of a Gj^.- activator deficiency in two patients with G^2' gangliosidosis AB variant. Am. J. Hum. Genet. 59, 1048-1C56.
  • Schnabel, D., Schröder, M. & Sandhoff, K. (1991) Mutation in the sphingolipid activator protein 2 in a patient with a variant of Gaucher dis­ease. FEBS Lett 284, 57-59.
  • Schnabel, D., Schröder, M., Fürst, W., Klein, A., Hurwitz, R., Zenk, T., Weber. J., Harzer, K., Paton, B.C., Poulos, A., Suzuki, K. & Sandhoff, K. (1992) Simultaneous deficiency of sphin­golipid activator proteins 1 and 2 is caused by a mutation in the initiation codon of their com­mon gene. J. Biol Chem. 267, 3312-3315.
  • Schröder, M., Schnabel, D., Suzuki, K. & Sand- hoff, K. (1991) A mutation in the gene of a glycolipid-binding protein (GM2 activator) that causes Gj^gangliosidosis variant AB. FEBS Lett 290, 1-3.
  • Schröder, M., Schnabel, D., Hurwitz, R., Young, E., Suzuki, K. & Sandhoff, K. (1993) Molecular genetics of Gj^ gangliosidosis AB variant: A novel mutation and expression in BHK cells. Hum Genet. 92, 437-440.
  • Spiegel, S., Foster, D. & Kolesnick, R. (1996) Sig­nal transduction through lipid second messen­gers. Curr. Opin. Cell Biol 8, 159-167.
  • Taniike, M., Yamanaka, S., Proia, R.L., Langa- man, C., Bonc-Turentine, T. & Suzuki, K. (1995) Neuropathology of mice with targeted disruption of Hexa gene, a model of Tay-Sachs disease. Acta Neuropathol. 89, 296-304.
  • Vielhaber, G., Hurwitz, R. & Sandhoff, K. (1997) Biosynthesis, processing, and targeting of sphingolipid activator protein (SAP) precur­sor in cultured human fibroblasts. Mannose 6- phosphate receptor-independent endocytosis of SAP precursor. J. Biol. Chem. 272, 32438-32446.
  • Walz, G., Aruffo, A., Kolanus, W., Bevilacqua, M. & Seed, B. (1990) Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tu­mor cells. Science 250, 1132-1135.
  • Wiegandt, H. (1985) Gangliosides; in New Compre­hensive Biochemistry (Neuberger, V.A. & van Deenen, L.L.M., eds.) vol. 10, pp. 199-260. El­sevier, Amsterdam.
  • Yamanaka, S., Johnson, M.D., Grinberg, A., West­phal, H., Crawley, J.N., Taniike, M., Suzuki, K. & Proia, R.L. (1994) Targeted disruption of the Hexa gene results in mice with biochemi­cal and pathologic features of Tay-Sachs dis­ease. Proc. Natl. Acad. Sei. U.S.A. 91, 9975-9979.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-daa55eef-9f9a-40b9-9cf3-818c68f22496
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.