PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2000 | 45 | 4 |

Tytuł artykułu

Individual variation and repeatability of maximum cold-induced energy assimilation in house mice

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Maximum cold-induced rate of food consumption in cold-acclimated laboratory house mice Mus domesticus averaged 10.4 g/day in females (body mass before cold exposure = 25.2 g) and 10.7 g/day in males (body mass = 31.7 g); corresponding maximum rates of energy assimilation were 139 kJ/day in females and 144 kJ/day in males. The traits were highly repeatable: the intraclass correlation coefficient for three trials at -10°C was greater than 0.7 for absolute values and greater than 0.6 for values independent of the initial body mass (residuals from ANCOVA). The estimate of repeatability of the mass-independent traits depends on which estimate of body mass (initial or after cold exposure) is used as a covariate in the regression or ANCOVA model. We conclude that the values of maximum cold-induced food consumption and energy assimilation are reliable estimates of the performance of individuals under a specific set of environmental conditions (low ambient temperature, but not limited access to food) and hence may be subject to phenatypic natural or artificial selection.

Wydawca

-

Czasopismo

Rocznik

Tom

45

Numer

4

Opis fizyczny

p.455-470,fig.

Twórcy

autor
  • Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland
autor
autor
autor

Bibliografia

  • Bennett A. F. 1997. Adaptation and the evolution of physiological characters. [In: Handbook of physiology. Vol. I. W. H. Dantzler, ed]. Oxford University Press, New York: 3-16.
  • Berteaux D., Thomas D, W., Bergeron J.-M. and Lapierre H. 1996. Repeatability of daily field metabolic rate in female meadow voles (Microtuspennsylvanicus). Functional Ecology 10: 751-759.
  • Boake C. R. B. 1989. Quantitative genetic studies of behavioral evolution, University of Chicago Press, Chicago: 1-390.
  • Carter P. A., Garland T. Jr, Dohm M. R. and Hayes J. P. 1999. Genetic variation and correlations between genotype and locomotor physiology in outbred laboratory house mice iMus domesticus). Comparative Biochemistiy and Physiology A 123: 157-164.
  • Chappell M. A., Bachman G. C. and Odel J. P. 1995. Repeatability of maximal aerobic performance in Belding's ground squirrels, Spermophilus beldingi. Functional Ecology 9: 498-504,
  • Chappell M. A., Zuk M. and Johnsen T. S. 1996. Repeatability of aerobic performance in red junglefowl: effects of ontogeny and nematode infection. Functional Ecology 10: 578-585.
  • Christians J. K. 1999. Controlling for body mass effects: is part-whole correlation important? Physiological and Biochemical Zoology 72: 250-253.
  • Crabbe J. C., Wahlsten D. and Dudek B. C. 1999. Genetics of mouse behavior: interactions with laboratory environment. Science 284: 1670-1672.
  • Dohm M. R. 1994. Quantitative genetics of locomotor performance and physiology in house mice Mus domesticus). Ph D thesis, University of Wisconsin, Madison: l-XV+264.
  • Dohm M. R., Hayes J. P. and Garland T. Jr 1996. Quantitative genetics of sprint running speec and swimming endurance in laboratory house mice (Mus domesticus). Evolution 50: 1688-1701.
  • Drożdż A. 1975. Metabolic cages for small mammals. (In: Methods for ecological bioenergetics. IBP Handbook no. 24. W. Grodziński, R. Z. Klekowski and A. Duncan, eds], Blackwell Scientific Publications, Oxford: 346-351.
  • Dykstra C. R. and Karasov W, H. 1992. Changes in gut structure and function of house vrens (Troglotydes aedon) in response to increased energy demand. Physiological Zoology 65: 422-442.
  • Falconer D. S. and Mackay T. F. C. 1996. Introduction to quantitative genetics. 4th ed. Longnan, Essex: 1-464.
  • Feder M. E., Bennett A. F. and Burggren W. W. 1987. New directions in ecological physidogy. Cambridge University Press, New York: 1-364.
  • Garland T. Jr and Bennett A. F. 1990. Quantitative genetics of maximal oxygen consumption in a garter snake. American Journal of Physiology 259: R986-R982.
  • Garland T. Jr and Carter P. A. 1994. Evolutionary physiology. Annual Review of Physiolog7 56: 579-621.
  • Garland T. Jr and Else P. L. 1987. Seasonal, sexual, and individual variation in endurance and activity metabolism in lizards. American Journal of Physiology 252: R439-R449.
  • Hammond K. A. and Diamond J. 1994. Limits to dietary nutrients intake and intestinal nutrient uptake in lactating mice. Physiological Zoology 67: 282-303.
  • Hammond K. A. and Diamond J. 1997. Maximal sustained energy budgets in humans and aninals. Nature 386: 457-462.
  • Hammond K. A., Konarzewski M., Torres R. M. and Diamond J. 1994. Metabolic ceilings unter a combination of peak energy demands. Physiological Zoology 67: 1479-1506.
  • Hauschka T. S. and Mirand E. A. 1973. The "breeder: HA(ICR)" Swiss mouse, a multipurpose stock selected for fecundity. [In: Perspectives in cancer research and treatment. G. P. Murph', D. Pressman and E. A. Mirand, edsj. Alan R. Riss, Inc., New York: 319-331.
  • Hayes J. P. 1989a. Altitudinal and seasonal effects on aerobic metabolism of deer mice. Journal of Comparative Physiology B 159: 453-459.
  • Hayes J. P. 1989b. Field and maximal metabolic rates of deer mice (Peromyscus maniculalus) a low and high altitudes. Physiological Zoology 62: 732-744.
  • Hayes J. P. and Chappell M. A. 1986. Effects of cold acclimation on maximum oxygen consumption during cold exposure and treadmill exercise in deer mice, Peromyscus maniculatus. Physiological Zoology 59: 473-481.
  • Hayes J. P. and Chappell M. A. 1990. Individual consistency of maximal oxygen consumption in deer mice. Functional Ecology 4: 495-503.
  • Hayes J. P., Garland T. Jr. and Dohm M. R. 1992. Individual variation in metabolism and reproduction of Mus: are energetics and life history linked? Functional Ecology 6: 5-14,
  • Hayes J. P. and Jenkins S. H. 1997. Individual variation in mammals. Journal of Mammalogy 78: 274-293.
  • Hayes J. P. and O'Connor C. S. 1999. Natural selection on thermorgenic capacity of high-altitude deer mice. Evolution 53: 1280-1287.
  • Hayes J. P. and Shonkwiler J. S. 1996. Analyzing mass-independent data. Physiological Zoology 69: 974-980.
  • Karasov W. H. 1990. Digestion in birds: chemical and physiological determinants and ecological implications. Studies in Avian Biology 13: 391-415.
  • Kolok A. S. 1999. Interindividual variation in the prolonged locomotor performance of ectothermic vertebrates: a comparison offish and herpetofaunal methodologies and a brief review of the recent fish literature. Canadian Journal of Fisheries and Aquatic Sciences 56: 700-710.
  • Konarzewski M. and Diamond J. 1994. Peak sustained metabolic rate and its individual variation in cold-stressed mice. Physiological Zoology 67: 1186-1212.
  • Koteja P. 1995. Maximum cold-induced energy assimilation in a rodent, Apodemus flauicollis. Comparative Biochemistry and Physiology 112 A: 479-485.
  • Koteja P. 1996a. Limits to the energy budget in a rodent, Peromyscus maniculatus: the central limitation hypothesis. Physiological Zoology 69: 981-993.
  • Koteja P. 1996b. Limits to the energy budget in a rodent, Peromyscus maniculatus: does gut capacity set the limit? Physiological Zoology 69: 994-1020.
  • Koteja P., Garland T. Jr, Sax J. K., Swallow J. G. and Carter P, A. 1999a, Behaviour of house mice artificially selected for high levels of voluntary wheel running. Animal Behaviour 58: 1307-1318.
  • Koteja P., Krol E. and Staliiiski J, 1994. Maximum cold- and lactation induced rate of energy assimilation in Acomys cahirinus. Polish Ecological Studies 20: 369-374.
  • Koteja P., Swallow J, G., Carter P. A. and Garland T. Jr 1999b. Energy cost of wheel running in house mice: implications for coadaptation of locomotion and energy budgets, Physiological and Bio­chemical Zoology 72: 238-249.
  • Lesseils C. M. and Boag T. 1987. Unrepeatable repeatabilities: a common mistake. Auk 104: 116-121.
  • Masman D., Dijkstra C., Daan S. and Bult A. 1989. Energetic limitation of parental effort: field experiments in the kestrel (Falco tinnunculus). Journal of Evolutionary Biology 2: 435-455.
  • McDevitt R. M. and Speakman J. R. 1994. Central limits to sustainable metabolic rate have no role in cold acclimation of the short-tailed field vole (Microtus agrestis), Physiological Zoology 67: 1117-1139.
  • Peterson C. C., Nagy K. A, and Diamond J. 1990. Sustained metabolic scope. Proceedings of the National Academy of Science USA 87: 2324-2328.
  • Rice M. C. and O'Brien S. J. 1980. Genetic variance of laboratory outbred Swiss mice. Nature 283: 157-161.
  • Sokal R. R. and Rohlf F. J. 1981. Biometry. 2nd ed. Freeman, San Francisco: 1-859.
  • Speakman J. R, and McQueenie J. 1996. Limits to sustained metabolic rate: the link between food intake, basal metabolic rate, and morphology in reproducing mice, Mus musculus. Physiological Zoology 69: 746-769.
  • Speakman J. R., Racey P. A., Haim A., Webb P. I., Eliison G. T. H. and Skinner J. D. 1994. Inter- and intraindividual variation in daily energy expenditure of the pouched mouse (Saccostomus cam- pestris). Functional Ecology 8: 336-342.
  • Swallow J, G. 1998. Artificial selection for high voluntary activity in house mice: a study in evolu­tionary physiology. University of Wisconsin, Madison: 1-179.
  • Swallow J. G.( Carter P. A. and Garland T. Jr 1998a. Artificial selection for increased wheel-running behavior in house mice. Behavior Genetics 28: 227-237.
  • Swallow J. G., Garland T. Jr, Carter P. A., Zhan W.-Z. and Sieck G. C. 1998b. Effects of voluntary activity and genetic selection on aerobic capacity in house mice (Mus domesticus), Journal of Applied Physiology 84: 69-76.
  • Weiner J. 1987. Maximum energy assimilation rates in the Djungarian hamster iPhodopus sungorus). Oecologia (Berlin) 72: 297-302.
  • Weiner J. 1989. Metabolic constraints to mammalian energy budgets. Acta Theriologica 34: 3-35.
  • Weiner J. 1992, Physiological limits to sustainable energy budgets in birds and mammals: ecological implications. Trends in Ecology and Evolution 7: 384-388.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-da493eac-3a36-4eab-8530-9f2118bbdc3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.