PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 27 | 4A |

Tytuł artykułu

Effect of salinity on physiological characteristics, yield and quality of microtubers in vitro in potato

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In vitro microtuberization provides an adequate experimental model for the physiological and metabolic studies of tuberization and the preliminary screenings of potential potato genotypes. The effects of saline stress at 0-80 mmol concentration on in vitro tuberization of two potato cultivars were investigated in this study. With an increase in the salt concentration, the microtuberization of potato was either delayed by 5-10 days (20 and 40 mmol NaCl) or inhibited completely (80 mmol NaCl) in addition to the reduction in microtuber yields. The two potato genotypes studied showed different trends in total soluble sugars, sucrose and starch contents of microtubers under NaCl stress, while glucose and fructose levels remained unchanged. The vitamin C content in microtubers of two potato genotypes was reduced by salt stress. Salinity applied from 20 to 60 mmol progrestively increased proline and malondialdehyde (MDA) levels in microtubers of both the potato cultivars. In genotype Zihuabai, NaCl at a low concentration (20 mmol) led to a signifi cant increase in peroxidase (POD) and polyphenoloxiadase (PPO) activities, while in Jingshi-2, the PPO activity decreased progressively with an increase in NaCl concentrations. Genotype Zihuabai exhibited higher tolerance to salt stress than Jingshi-2 under in vitro conditions. These results could be used for preliminary selections of salt tolerance in potato breeding programmes.

Wydawca

-

Rocznik

Tom

27

Numer

4A

Opis fizyczny

p.481-489,fig.,ref.

Twórcy

autor
  • Zhejiang University, Hangzhou 310029, China
autor
autor
autor
autor
autor

Bibliografia

  • Anonymous 1999. (Shanghai Plant Physiology Institute of Chinese Academy of Sciences & Shanghai Plant Physiology Society). Experimental Guide of Modern Plant Physiology. Science Press, Beijing: 127-128.
  • Augustin J., Johnson S. R., Teitzel C., Toma R. B., Shaw R. L., True R. H., Hogan J. M., Deutsch R. M. 1978. Vitamin composition of freshly harvested and stored potatoes. J. Food Sci., 43: 1566-1570.
  • Evers D., Schmit C., Mailliet Y., Hausman J. F. 1997. Growth characteristics and biochemical changes of poplar shoots in vitro under sodium chloride stress. J. Plant Physiol., 151: 748-753.
  • Fernie A. R., Willmitzer L., Trethewey R. N. 2002. Sucrose to starch: a transition in molecular plant physiology. Trends Plant Sci., 7: 35-41.
  • Heuer B., Nadler A. 1998. Physiological response of potato plants to soil salinity and water deficit. Plant Sci., 137: 43-51.
  • Katerji N., van Hoorn J. W., Hamdy A., Mastrorilli M. 2003. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric. Water Manag., 62: 37-66.
  • Leul M., Zhou W.J. 1999. Alleviation of waterlogging damage in winter rape by uniconazole application: Effects on enzyme activity, lipid peroxidation and membrane integrity. J. Plant Growth Regul., 18: 9-14.
  • Levy D. 1992. The reiponse of polatoes (Solanum tuberosum L.) to salinity: plant growth and tuber yields in the arid desert of Isiael. Ann. Appl. Biol., 120: 547-555.
  • Li H. Z., Zhou W. J., Zhang Z. J., Gu H. H., Takeuchi Y., Yoneyama K. 2005. Effect of g-irradiation on development, yield and quality of microtubers in vitro in potato (Solanum tuberosum L.). Biol. Plant., in press.
  • Lin C. C., Kao C. H. 1996. Proline accumulation is associated with inhibition of rice seedling root growth caused by NaCl. Plant Sci., 114: 121-128.
  • Lopez-Delgado H., Scott I. M. 1997. Induction of in vitro tuberization of potato plants by acetylsalicylic acid. J. Plant Physiol., 151: 74-78.
  • Martinez C. A., Maestri M., Lani E. R. G. 1996. In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp.) differing infrost resistance. Plant Sci., 116: 177-184.
  • Men F. Y., Liu M. Y. 1995. Physiology of Potato. China Agriculture Press, Beijing: 317-335.
  • Momoh E.J.J., Zhou W.J., Kristiannson B. 2002. Variation in the development of secondary dormancy in oilseed rape genotypes under conditions of stress. Weed. Res., 42: 446-455.
  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant., 15: 473-497.
  • Nadler A., Heuer B. 1995. Effect of saline irrigation and water deficit on tuber quality, Potato Res., 38: 119-123.
  • Nemoto Y., Sasakuma T. 2002. Differential stress responses of early salt-stress responding genes in common wheat. Phytochem., 61: 129-133.
  • Nie H. Y., Huang W. K., Tang Y. Z., Fu J. Z. 1987. Vitamin and Its Analytical Methods. Shanghai Scientific and Technologic Literature Press, Shanghai: 234-236.
  • Nowak J, Colborne D. 1989. In vitro tuberization and tuber proteins as indicators of heat stress tolerance in potato. Am. Pot. J., 66: 35-45.
  • Patel R. M., Prasher S. O., Donnelly D., Bonnell R. B. 2001. Effect of initial soil salinity and subirrigation water salinity on potato tuber yield and size. Agric. Water Manag., 46: 231-239.
  • Sasikala D. P. P., Devi Prasad P. V. 1994. Salinity effects on in vitro performance of some cultivars of potato. Braz. J. Plant Physiol., 6: 1-6.
  • Sergeeva L. I., Bruijn S. M., Koot-Gronsveld E. A. M., Navratil O., Vreugdenhil D. 2000. Tuber morphology and starch accumulation are independent phenomena: Evidence from ipt-transgenic potato lines. Physiol. Plant., 108: 435-443.
  • Silva J. V. B., Otoni W. C., Martinez C. A., Dias L. M., Silva M. A. P. 2001. Microtuberization of Andean potato species (Solanum spp.) as affected by salinity. Sci. Horti., 89: 91-101.
  • Smirnoff N. 2000. Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr. Opin. Plant Biol., 3: 229-235.
  • Struik P., Vreugdenhil D., Vaneck H. J., Bachem C. W., Visser R. G. F. 1999. Physiological and genetic control of tuber formation. Potato Res., 42: 313-331.
  • Veramendi J., Willmitzer L., Trethewey R. N. 1999. In vitro grown potato microtubers are a suitable system for the study of primary carbohydrate metabolism. Plant Physiol. Biochem., 37: 693-697.
  • Vreugdenhil D., Boogaard Y., Visser R. G. F, Bruijn S. M. 1998. Comparison of tuber and shoot formation from in vitro culiured poiato explants. Plant Cell Tis. Org. Cult., 53: 197-204.
  • Winicov D. 1993. Gene expression in relation to salt tolerance, In: Stress-induced Gene Expression in Plants, ed. by Basra A. S. Hardwood Academic Pubiishers, Switzerland: 61-130.
  • Zhang X. Z. 1992. Methodology of Crop Physiology. Agriculture Press, Beijing: 142-212.
  • Zhang Y., Brault M., Chalavi V., Donnelly D. 1993. In vitro screening for salinity tolerant potato. In: Proc. of the 13 th Iniernaiional Congress on Biometeorology. Calgary, Canada.
  • Zhang Z. J., Zhou W. J., Li H. Z. 2004. The role of GA, IAA and BAP in the regulation of in vitro shoot growth and microtuberization in potato. Acta Physiol. Plant., in press.
  • Zhao K. F. 1993. Physiology of Salinity Resistance in Plant. China Science and Technology Press, Beijing: 52-55.
  • Zhou W. J., Leul M. 1998. Uniconazole-induced alleviation of freezing inj ury in reiation to change in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regul., 26: 41-47.
  • Zhou W. J., Leul M. 1999. Uniconazole-induced tolerance of rape plant to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul., 27: 99-104.
  • Zhou W.J., Yoneyama K., Takeuchi Y., Iso S., Rungmekarat S., Chae S.H, Sato D., Joel D.M. 2004.
  • In vitro infection of host roots by differential calli of the parasitic plant Orobanche. J. Exp. Bot., 55: 899-907.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-da119f0a-a2f6-4c6f-b970-6fa5635e780b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.