PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 52 | 6 |

Tytuł artykułu

Znaczenie bakterii Burkholderia cepacia dla rolnictwa i ochrony srodowiska naturalnego

Treść / Zawartość

Warianty tytułu

EN
Significance of Burkholderia cepacia bacteria in agriculture and environmental protection

Języki publikacji

PL

Abstrakty

EN
Burkholderia cepacia complex (Bcc) was originally recognized as a pathogen of onions. It causes sour skin of onions, what is associated with the yellow/brown coloured soft rot of onion tissue. It is a disease very important economically. Additionally, Burkholderia cepacia has positive environmental effects. The bacteria is able to produce antimicrobial compounds that protect plants, as well as some factors that promote plant growth. B. cepacia also can degrade a wide variety of compounds including pollutants, and therefore it might be used as a bioremediation agent.

Wydawca

-

Rocznik

Tom

52

Numer

6

Opis fizyczny

s.25-37,bibliogr.

Twórcy

autor
  • Instytut Warzywnictwa im.Emila Chroboczka, ul.Konstytucji 3 Maja 1/3, 96-100 Skierniewice
autor

Bibliografia

  • [1] Adjei M.D., Ohta Y. 1999. Isolation and characterization of a cyanide-utilizing Burkholderia cepacia strain. World J. Microbiol. Biotechnol. 15: 699-704.
  • [2] Adjei M.D., Otha Y. 2000. Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C-3. J. Biosci. Bioengin. 89: 274-277.
  • [3] Aguilar C., Bertani I., Venturi V. 2003. Quorum-sensing system and stationary-phase sigma factor (rpoS) of the onion pathogen Burkholderia cepacia genomovar I type strain, ATCC 25416. Appl. Environ. Microbiol. 69(3): 1739-1747.
  • [4] Aguilar C., Friscina A., Devescovi G., Kojic M., Venturi V. 2003. Identification of quorum-sensing-regulated genes of Burkholderia cepacia. J. Bacteriol. 185(21): 6456-6462.
  • [5] Baligh M., Delgado M.A., Conway K.E. 1999. Evaluation of Burkholderia cepacia strains: root colonization of Catharanthus roseus and in-vitro inhibition of selected soil-borne fungal pathogens. Proc. Okla. Acad. Sci. 79: 19-27.
  • [6] Barac T., Taghavi S., Borremans B., Provoost A., Oeyen L., Colpaert J.V., Vangronsveld J., van der Lelie D. 2004. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nature Biotechnol. 22: 583-588.
  • [7] Bassler B.B. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2: 582-587.
  • [8] Bevivino A., Dalmastri C., Tabacchioni S., Chiarini L. 2000. Efficacy of Burkholderia cepacia MCI 7 in disease suppression and growth promotion of maize. Biol. Fertil. Soils 31: 225-231.
  • [9] Bevivino A., Dalmastri C., Tabacchioni S., Chiarini L., Carusi M.V., Del Gallo M., Visca P. 1994. Phenotypic comparison between rhizosphere and clinical isolates of Burkholderia cepacia. Microbiol. 140: 1069-1077.
  • [10] Bevivino A., Sarrocco S., Dalmastri C., Tabacchioni S., Cantale C., Chiarini L. 1998. Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol. Ecol. 27: 225-237.
  • [11] Burkhead K.D., Schisler D. A., Slininger P.J. 1994. Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Appl. Environ. Microbiol. 60: 2031-2039.
  • [12] Burkholder W. 1950. Sourskin, a bacterial rot of onion bulbs. Phytopathol. 40: 115-118
  • [13] Cartwright D.K., Benson D.M. 1995. Biological control of Rhizoctonia stem rot of poinsettia in polyfoam rooting cubes with Pseudomonas cepacia and Paecilomyces lilacinus. Biol. Control 5: 237-244.
  • [14] Cartwright D.K., Benson D.M. 1995. Optimization of biological control of Rhizoctonia solani stem rot of poinsettia by Paecilomyces lilacinus and Pseudomonas cepacia. Plant Dis. 79: 301-308.
  • [15] Cartwright D.K., Chilton W.S., Benson D.M. 1995. Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl. Microbiol. Biotechnol. 43: 211-216.
  • [16] Coenye T., Vandamme P., Govan J.G., Li Puma J.J. 2001. Taxonomy and identification of the Burkholderia cepacia complex. J. Clin. Microbiol. 39: 3427-3436.
  • [17] Conway K.E., Foor C.J., Malvick D., Bender C. 1989. Inhibition by Pseudomonas cepacia, a potential biocontrol agent, of selected soilborne pathogens. Phytopathol. 79: 1159.
  • [18] Coventry H.S., Dubery I.A. 2001. Lipopolysaccharides from Burkholderia cepacia contribute to an enhanced defensive capacity and the induction of pathogenesis-related proteins in Nicotianae tabacum. Physiol. Molecul. Plant Pathol. 58: 149-158.
  • [19] Di Cello F., Bevivino A., Chiarini L., Fani R., Paffetti D., Tabacchioni S., Dalmastri C. 1997. Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl. Environm. Microbiol. 63: 4485-4493.
  • [20] Estrada-De Los Santos P., Bustillos-Cristales R., Caballero-Mellado J. 2001. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 67: 2790-2798.
  • [21] Hebbar K.P., Atkinson D., Tucker W., Dart P.J. 1992. Suppression of Fusarium moniliforme by maize root-associated Pseudomonas cepacia. Soil Biol. Biochem. 24: 1009-1020.
  • [22] Hebbar K.P., Davey A.G., Merrin J., McLoughlin T.J., Dart P.J. 1992. Pseudomonas cepacia, a potential suppressor of maize soil-borne diseases-seed inoculation and maize root colonization. Soil Biol. Biochem. 24: 999-1007.
  • [23] Heungens K., Parke J.L. 2001. Postinfection biological control of oomycete pathogens of pea by Burkholderia cepacia AMMDRl. Phytopathol. 91: 383-391.
  • [24] Holmes A., Govan J, Goldstein R. 1998. Agricultural use of Burkholderia (Pseudomonas) cepacia: A threat to human health? Emerging infectious Diseases 4: 221-227.
  • [25] Hwang J., Benson D.M. 2003. Expression of induced systemic resistance in poinsettia cuttings against Rhizoctonia stem rot by treatment of stock plant with binucleate Rhizoctonia. Biol. Contral 27: 73-80.
  • [26] Hwang J., Chilton W.S., Benson D.M. 2002. Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia. Biol. Control 25: 56-63.
  • [27] Janisiewicz W.J., Roitman J. 1988. Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia. Phytopathol. 78: 1697-1700.
  • [28] Kang Y., Carlson R., Tharpe W., Schell M.A. 1998. Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl. Environm. Microbiol. 64: 3939-3947.
  • [29] Kawamoto S.O., Lorbeer J.W. 1974. Infectious of onions leaves by Pseudomonas cepacia. Phytopathol. 64: 1440-1445.
  • [30] Kloepper J.W. 1993. Plant growth-promoting rhizobacteria as biological control agents. W: Soil Microbial Ecology: Applications in agricultural and environmental management, ed. F. Blaine Metting Jr. New York, Marcel Dekker: 255-274.
  • [31] Leahy J.G., Tracy K.D., Eley M.H. 2003. Degradation of mixtures of aromatic and chlor aliphatic hydrocarbons by aromatic hydrocarbon-degrading bacteria. FEMS Microbiol. Ecol. 43: 271-276.
  • [32] Lee C.H., Kim S., Hyun B., Suh J.W., Yon C., Kim C., Lim Y., Kim C. 1994. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. J. Antibiot. 47: 1402-1406.
  • [33] Lessie T.G., Hendrickson W., Manning B.D., Devereux R. 1996. Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol. Lett. 144 (2-3): 117-128.
  • [34] Linker A., Evans L.R., Impallomeni G.2001. The structure of a polysaccharide from infectious strains of Burkholderia cepacia. Carbohydrate Res. 335: 45-54.
  • [35] Lorbeer J.W., Haudenshield J.S., Gundersheim N.A., Mark G.L. 2004. Ecological dynamics of Burkholderia cepacia causing canker-sour skin of onions and integrated pest management approaches leading to control of the disease. 4th International ISHS Symposium on Edible Alliaceae (ISEA). Beijing, China: 97-98.
  • [36] Mahenthiralingam E., Urban T.A., Goldberg J.B. 2005. The multifarious, multireplicon Burkholderia cepacia complex. Nature Rev. Microb. 3: 144-156.
  • [37] Mao W., Lewis J.A., Hebbar P.K., Lumsden R.D. 1997. Seed treatment with a fungal or bacterial antagonist for reducing com damping-off caused by species of Pythium and Fusarium. Plant Dis. 81: 450-454.
  • [38] Miller S.C.M., LiPuma J.J., Parke J.L. 2002. Culture-based and non-growth-dependent detection of the Burkholderia cepacia complex in soil environments. Appl. Environ. Microbiol. 68: 3750-3758.
  • [39] Miller L.G., Warner K.L., Baesman S.M., Oremland R.S., McDonald I.R., Radajewski S., Murrell J.C. 2004. Degradation of methyl bromide and methyl chloride in soil microcosms: Use of stable C isotope fractionation and stable isotope probing to identify reactions and responsible microorganisms. Geochim. Cosmochim. Acta 68: 3271-3283.
  • [40] Milus E.A., Rothrock C.S. 1997. Efficacy of bacterial seed treatments for controlling Pythium root rot of winter wheat. Plant Dis. 81: 180-184.
  • [41] Nacamulli C., Bevivino A., Dalmastri C., Tabacchioni S., Chiarini L. 1997. Perturbation of maize rhizosphere microflora following seed bacterization with Burkholderia cepacia MCI 7. FEMS Microbiol. Ecol. 23: 183-193.
  • [42] Okoh A., Ajisebutu S, Babalola G., Trejo-Hernandez M.R. 2001. Potential of Burkholderia cepacia RQ1 in the biodegradation of heavy crude oil. Int. Microbiol. 4: 83-87.
  • [43] Parke J.L. 1990. Population dynamics of Pseudomonas cepacia in the pea spermosphere in relation to biocontrol of Pythium. Phytopathol. 80: 1307-1311.
  • [44] Parke J. L., Gurian-Sherman D.2001. Diversity of the Burkholderia cepacia complex and implications for risk assessment biological control strains. Ann. Rev. Phytopathol. 39: 225-258.
  • [45] Peres C.M., Russ R., Lenke H., Agathos S.N. 2001. Biodegradation of 4-nitrobenzoate, 4-amonobenzoate and their mixtures: new strains, unusual metabolites and insights into pathway regulation. FEMS Microbiol. Ecol. 37: 151-159.
  • [46] Philippe G., Vega D., Bastide J. 2001. Microbial hydrolysis of methyl aromatic esters by Burkholderia cepacia isolated from soil. FEMS Microbiol. Ecol. 37: 251-258.
  • [47] Ramette A., LiPuma J.J., Tiedje J.M. 2005. Species abundance and diversity of Burkholderia cepacia complex in the environment. Appl. Environ. Microbiol. 71 (3): 1193-1201.
  • [48] Robak J., Wiech K. 1998. Choroby i szkodniki warzyw. Plantpress. Kraków: 18-19.
  • [49] Saari R.E., Hogan D.A., Hausinger R.P. 1999. Stereospecific degradation of the phenoxypropionate herbicide dichlorprop. J. Molecul. Catal. B: Enzymatic 6: 421-428.
  • [50] Schaad N.W., Jones J.B., Chun W. 2001. Laboratory guide for identification of plant pathogenic bacteria. APS Press St. Paul, Minnesota: 139-140.
  • [51] Schlomann M., Schmidt E., Knackmuss H.J. 1990. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J. Bacteriol. 172 (9): 5112-5118.
  • [52] Schwartz H.F., Mohan S. K. 1965. Compendium of onion and garlic diseases. APS Press: 86-91.
  • [53] Sfalanga A., Di Cello F., Mugnai L., Tegli S., Fani R., Surico G. 1999. Isolation and characterisation of a new antagonistic Burkholderia strain from the rhizosphere of healthy tomato plants. Res. Microbiol. 150: 45-59.
  • [54] Shields M.S., Reagin M.J., Gerger R.R., Campbell R. Somerville C. 1995. TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4. Appl.Environ. Microbiol. 61(4): 1352-1356.
  • [55] Sobiczewski P., Schollenberger M. 2002. Bakteryjne choroby roślin ogrodniczych. PWRiL Warszawa: 64-67.
  • [56] Szczech M., Shoda M. 2004. Biocontrol of Rhizoctonia damping-off of tomato by Bacillus subtilis combined with Burkholderia cepacia. J. Phytopathol. 152: 549-556.
  • [57] Teviotdale B.L., Davis R.M., Guerard J.P., Harper D.H. 1989. Effect of irrigation management on sour skin of onion. Plant Dis. 73: 819-822.
  • [58] Van Loon L.C., Bakker P.A.H., Pietrese C.M.J. 1998. Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36: 453-483.
  • [59] Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (PALLERONI and HOLMES 1981) comb. nov. Microbiol. Immunol. 36: 1251-1275.
  • [60] Yeager C.M., Bottomley P.J., Arp D.J. 2001. Cytotoxicity associated with trichloroethylene oxidation in Burkholder ia cepacia G4. Appl. Environ. Microbiol. 67 (5):2107-2115.
  • [61] Yohalem D.S., Lorbeer J.W. 1997. Distribution of Burkholderia cepacia phenotypes by niche, method of isolation and pathogenicity to onion. Ann. Appl. Biol. 130: 467-479.
  • [62] Zaitsev G.M., Tsoi T.V., Grishenkov V.G., Plotnikova E.G., Baronin A.M. 1991. Genetic control of degradation of chlorinated benzoic acids in Arthrobacter globiformis, Corynebacterium sepedonicum and Pseudomonas cepacia strains. FEMS Microbiol. Lett. 65 (2): 171-176.
  • [63] Zaki K., Misaghi I.J., Heydari A. 1998. Control of cotton seedling damping-off in the field by Burkholderia (Pseudomonas) cepacia. Plant Dis. 82: 291-293.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-d9ac12d7-9374-4851-89ff-9447960c1d6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.