PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 27 | 2 |

Tytuł artykułu

Differences in accumulation of soluble alpha-galactosides during seed maturation of several Vicia species

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Composition and levels of soluble α-galactosides: raffinose family oligosaccharides (RFOs) and galactosyl cyclitols (Gal-C) in developing seeds were measured by high resolution gas chromatography (HRGC) method. The studies were performed on maturing seeds of several wild and cultivated Vicia species: Viciaangustifolia L.(commonvetch), Vicia craccaL. (bird vetch), Vicia grandiflora Scop. (large yellow vetch), Vicia hirsuta (L.) S.F.Gray (tiny vetch), Vicia sativa L. (garden vetch, spring-growing cultivar Kwarta), and Vicia villosa Roth (winter vetch). In all Vicia species similar patterns in the accumulation of RF Os were observed. Galactinol - the donor of galactosyl moieties in α-galactosides biosynthesis was present in the middle stage of seed development, before appearing measurable levels of RFOs. Accumulation of RFOs started parallel with seed desiccation process. At first accumulation of the raffinose, then few days later stachyose and finally verbascose was noticed. In the final stage of seed maturation the verbascose was the main soluble α-galactoside (up to 3 % of dry weight, V. sativa). Besides the RFOs seeds of three Vicia species (V. cracca, V. hirsuta, and V. villosa) accumulated D-pinitol and its α-galactosides (Gal-C). Mono-galactosylpinitols (similar to raffinose) appeared in these species 2-4 days after galactinol, di-galactosyl pinitol A (common name: ciceritol) and di-galactosyl myo-inositol were present several days later than raffinose, and accumulation of tri-galactosyl pinitol A (TGPA) began after accumulation of stachyose. Matured seeds of V. hirsuta contained much more RFOs than Gal-C, opposite to seeds of V. villosa, and V. cracca where concentration of Gal-C was 4-8-fold higher than RFOs. In V. cracca seeds RFOs were almost replaced by Gal-C. In seeds of V. cracca and V. villosa the level of D-pinitol was significantly higher, than the level of myo-inositol. Contents of both cyclitols declined rapidly at the beginning of seed desiccation, when accumulation of RFOs and Gal-C quickly ini creased. We suggest that α-galactosides of D-pinitol can substitute raffinose family oligosaccharides and play similar role during seed maturation and storage.

Wydawca

-

Rocznik

Tom

27

Numer

2

Opis fizyczny

p.163-171,fig.,ref.

Twórcy

autor
  • Warmia and Mazury University, Oczapowskiego 1A, 10-957 Olsztyn, Poland
autor
autor
autor

Bibliografia

  • Bentsink L., Alonso-Blanco C., Vreugdenhill D., Tesnier K., Groot S.P.C., Koornneef M. 2000. Genetic analysis of seed-soluble oligosaccharides in relation to seeds storability of Arabidopsis. Plant Physiol., 124: 1595-1604.
  • Blackman S.A., Obendorf R.L., Leopold A.C. 1992. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiol., 100: 225-230.
  • Crowe J.H., Crowe L.M. Carpenter J.F., Wistrom C.A. 1987. Stabitization of dry phospholipid bilayers and proteins by sugars. Biochem. J., 242: 1:10.
  • Crowe L.M., Crowe J.H. 1992. Stabilization of dry liposomes by carbohydrates. In May J.C. and Brown F (Eds.): Developments in biological standarization. Vol. 74. Biological products freeze - drying and formulation. pp. 285-294.
  • Frias J., Bakhsh A., Jones D.A., Arthur A.E., Vidal-Valverde C., Rhodes M.J.C, Hedley C.L. 1999.
  • Genetic analysis of the raffinose oligosaccharide pathway in lentil seeds. J. Exp. Bot., 50: 469-476.
  • Górecki R.J., Brenac P., Clapham W.M., Willcott J.B., Obendorf R.L. 1996. Soluble carbohydrates in white lupin seeds matured at 13 and 28 °C. Crop Sci., 36: 1277-1282.
  • Górecki R.J., Piotrowicz-Cieślak A.I., Lahuta L.B., Obendorf R.L. 1997. Soluble carbohydrates in desiccation tolerance of yellow lupin seeds during maturation and germination. Seed Sci Res., 7: 107-115.
  • Górecki R.J., Lahuta L.B., Hedley C., Jones A. 2000. Soluble sugars in maturing pea seeds of different lines in relation to desiccation tolerance. CAB International (eds M.Black, K.J. Bradford, J. Vasquez-Ramos). “Seed Biology: Advances and Applications”, 2000, pp. 67-74.
  • Hincha D.K., Zuther E., Heyer A.G. 2003. The preservation of liposomes by raffinose famtly oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions. Biochem. Biophys. Acta, 1612: 172-177.
  • Hitz W.D., Carlson T.J., Kerr P.S., Sebastian S.A. 2002. Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol., 128: 650-660.
  • Hoch G., Peterbauer T., Richter A. 1999. Purification and characterization of stachyose synthase from lentil (Lens culinaris) seeds: galactopinitol and stachyose synthesis. Arch. Biochem. Biophys., 366: 75-81.
  • Hoekstra F.A., Wolkers W.F., Buitink J., Golovina E.A. 1997. Desiccation tolerance and long term structural stability. In :Proc. 5th Int.Workshop on Seeds “Basic and Applied Aspects of Seed Biology” R.H. Ellis, M. Black, A.J. Murdoch, T.D. Hong Eds, Current Plant Science and Biotechnology, Kluver Academic Publishers, vol. 30, pp.1-12.
  • Horbowicz M., Obendorf R.L. 1994. Seed desiccation tolerance and storability: Dependence on flatu lence-producing oligosaccharides and cyclitols - review and survey. Seed Sci. Res., 4: 385-405.
  • Kuo T.M. 1992. Isolation and identification of galactinol from castor oil t eed meal. JAOCS, 69: 569-574.
  • Kuo T.M., Lowell C.A., Smith P.T. 1997. Changes in soluble carbohydrates and enzymic activities in maturing soybean seed tissues. Plant Sci., 125: 1-11.
  • Lahuta L.B., Łogin A., Rejowski A., Socha A., Zalewski K. 2000. Influence of water deficit on the accumulation of sugars in developing field bean (Vicia fabavar. minor) seeds. Seed Sci. Technol., 28: 93-100.
  • Lahuta L.B., Górecki R.J., Hołdyński C., Horbowicz M. 2001. The seeds of genus Vicia (Leguminosae) as an object for study on metabolism of raffinose series of oligosaccharides and galactosyl cyclitols. Abstract of 4th European AEP Conference on Grain Legumes, Cracow, Poland, pp 366-367.
  • Leopold A.C., Sun W.Q., Bernal-Lugo I. 1994. The glassy state in seeds: analysis and function. Seed Sci. Res. 4: 267-27.
  • Lowell C.A., Kuo T.M. 1989. Oligosaccharide metabolism and accumulation in developing soybean seeds. Crop Sci., 29: 459-465.
  • Modi A.T., McDonald M.B., Streeter J.G. 2000. Soluble carbohydrates in soybean seeds during development and imbibition. Seed Sci. Technol., 28: 115-127.
  • Obendorf R.L. 1997. Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance. Seed Sci. Res., 7: 63-74.
  • Obendorf R.L., Horbowicz M., Dickerman A.M., Brenac P., Smith M.E. 1998a. Soluble oligosaccha rides and galactosyl cyclitols in maturing soybean seeds inplanta and in vitro. Crop Sci., 38: 78-84.
  • Obendorf R.L., Dickerman A.M., Pflum T.M., Kacalanos M.A., Smith M.E. 1998b. Drying rate alters soluble carbohydrates, desiccationh tolerance, and subsequent seedting growth of soybean (Glycine max L. Merrill) zygotic embryos during in vitro maturation. Plant Sci., 132: 1-12.
  • Peterbauer T., Puschenreiter M., Richt er A. 1998. Metabotism of galactosylononitol in seeds of Vigna umbellata. Plant Cell Physiol., 39: 334-341.
  • Peterbauer T., Richter A. 1998. Galactosylononitol and stachyose synthesis in seeds of adzuki bean. Purification and characterization of stachyose synthase. Plant Physiol., 117: 165-172.
  • Peterbauer T., Richter A. 2001. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci. Res., 11: 185-197.
  • Peterbauer T., Lahuta L.B., Blochl A., Mucha J., Hedley C.L., Górecki R.J., Richter A. 2001. Analysis of the raffinose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition. Plant Physiol., 127: 1764-1772.
  • Peterbauer T., Mach L., Mucha J., Richter A. 2002a. Functional expression of cDNA encoding pea (Pisum sativum L.) raffinose synthase, partial purification of the enzyme from maturing seeds, and steady-state kinetic analysis of raffinose synthesis. Planta, 215: 839-846.
  • Peterbauer T., Mucha J., Mach L., Richter A. 2002b. Chain elongation of raffinose in pea seeds. Isotation, characterization, and molecular cloning of a multifunctional enzyme catalyzing the synthesis of stachyose and verbascose. J. Biol. Chemistry, 277: 194-200.
  • Peterbauer T., Karner U., Mucha J., Mach L., Jones D.A., Hedley C.L., Richter A. 2003. Enzymatic control of the accumutation of verbascose in pea seeds. Plant Cell and Environment, 26: 1385-1391.
  • Rathinasabapathi B. 2000. Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann. Bot., 86: 709-716.
  • Szczeciński P., Gryff-Keller A., Horbowicz M., Lahuta L.B. 2000. Galactosylpinitols isotated from vetch (Vicia villosa Roth.) seeds. J. Agr. Food Chem. 48: 2717-2720.
  • Yasui T., Endo Y., Ohashi H. 1987. Infrageneric variation of the low molecular weight carbohydrate composition of the seeds of genus Vicia (Leguminosae). Bot. Mag. Tokyo, 100: 255-272.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-d9518daa-0d51-43f0-8ec5-1922c1d9ef38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.