EN
According to a theory of lake restoration through food web manipulation, the removal of planktivorous fish results in the development of large cladocerans (mostly daphnids) and, consequently, in reduction of algal biomass. However, as a rule, publications devoted to different aspects of the theory completely neglected other groups of plankton invertebrates, thought they may reach very high densities. Investigations carried out in five Masurian lakes differing in trophic state and mixis showed that in most lakes the role of small cladocerans, copepods, rotifers and protozoans in the consumption of algal food and nutrient regeneration was more important than the role of large daphnids. Daphnia cucullata played more significant role (excreting 28% of the regenerated P) during “clear water phase” only in one lake – Lake Głębokie. In the remaining lakes more important was an impact of Bosmina longirostris (11–59% of the regenerated P), younger stages of cyclopoids (23%), ciliate Strobilidium humile (20%) or detritophagous rotifer Keratella cochlearis (21%). Evidenced in many papers special role of large cladocerans in clearing lake water is explained by their combined direct (by “efficient” filtering) and indirect (suppression of ciliates and rotifers through predation, interference and resource competition) impact on nutrient sedimentation or exclusion from internal cycling.