PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 09 | 4A |

Tytuł artykułu

Molecular characterisation of the sand protein family: a study based on comparative genomics, structural bioinformatics and phylogeny

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The activities of vertebrate lysosomes are critical to many essential cellular processes. The yeast vacuole is analogous to the mammalian lysosome and is used as a tool to gain insights into vesicle mediated vacuolar/lysosome transport. The protein SAND, which does not contain a SAND domain (PFAM accession number PF01342), has recently been shown to function at the tethering/docking stage of vacuole fusion as a critical component of the vacuole SNARE complex. In this publication we have identified SAND in diverse eukaryotes, from single celled organisms such as the yeasts to complex multicellular chordates such as mammals. We have demonstrated subfamily divisions in the SAND proteins and show that in vertebrates, a duplication event gave rise to two SAND sequences. This duplication appears to have occurred during early vertebrate evolution and conceivably with the evolution of lysosomes. Using bioinformatics we predict a secondary structure, solvent accessibility profile and protein fold for the SAND proteins and determine conserved sequence motifs, present in all SAND proteins and those that are specific to subsets. A comprehensive evaluation of yeast and human functional studies in conjunction with our in silico analysis has identified potential roles for some of these motifs.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

09

Numer

4A

Opis fizyczny

p.739-753,fig.,ref.

Twórcy

autor
  • MRC Rosalind Franklin Centre for Genomic Research, Hinxton, Cambridge, CB10 1 SB, U.K.
autor
autor
autor
autor
autor
autor

Bibliografia

  • 1. Lemmon, S.K. and Traub, L.M. Sorting in the endosomal system in yeast and animal cells. Curr. Opin. Cell Biol. 12 (2000) 457-66.
  • 2. Mullins, C. and Bonifacino, J.S. The molecular machinery for lysosome biogenesis. Bioessays 23 (2001) 333-343.
  • 3. Wickner, W. and Haas, A. Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms. Annu. Rev. Biochem. 69 (2000) 247275.
  • 4. Wickner, W. Yeast vacuoles and membrane fusion pathways. EMBO J. 21 (2002) 1241-1247.
  • 5. Wang, C.W., Stromhaug, P.E., Kauffman, E.J., Weisman, L.S. and Klionsky, D.J. Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J. Cell. Biol. 163 (2003) 973-985.
  • 6. Tizon, B., Rodriguez-Torres, M., Rodriguez-Belmonte, E., Cadahia, J.L. and Cerdan, E. Identification of a putative methylenetetrahydrofolate reductase by sequence analysis of a 6.8 kb DNA fragment of yeast chromosome VII. Yeast 12_(1996) 1047-1051.
  • 7. Cottage, A., Clark, M., Hawker, K., Umrania, Y., Wheller, D., Bishop, M. and Elgar, G. Three receptor genes for plasminogen related growth factors in the genome of the puffer fish Fugu rubripes. FEBS Lett. 443 (1999) 370-374.
  • 8. Cottage, A., Edwards, Y.J.K. and Elgar, G. SAND, a new protein family: from nucleic acid to protein structure and function prediction. Comp. Funct. Genom. 2 (2001) 226-235.
  • 9. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 (1997) 3389-3402.
  • 10. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A. Gasteiger, E., Martin, M.J., Michoud, K., O'Donovan, C., Phan, I., Pilbout, S. and Schneider, M. The SWISS_PROT protein knowledge base and its supplement TrEMBL in 2003. Nucleic Acids Res. 31 (2003) 365-370.
  • 11. Kulikova, T., Aldebert, P., Althorpe, N., Baker, W., Bates, K., Browne, P., van den Broek, A., Cochrane, G., Duggan, K., Eberhardt, R., Faruque, N., Garcia-Pastor, M., Harte, N., Kanz, C., Leinonen, R., Lin, Q., Lombard, V., Lopez, R., Mancuso, R., McHale, M., Nardone, F., Silventoinen, V., Stoehr, P., Stoesser, G., Tuli, M.A., Tzouvara, K., Vaughan, R., Wu, D., Zhu, W. and Apweiler, R. The EMBL Nucleotide Sequence Database. Nucleic Acids Res. 32 (2004) 27-30.
  • 12. Birney, E., Andrews, D., Bevan, P., Caccamo, M., Cameron, G., Chen, Y., Clarke, L., Coates, G., Cox, T. and Cuff, J. Ensembl 2004. Nucleic Acids Res. 32 (2004) 468-470.
  • 13. Thompson, J.D., Higgins, D.G. and Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 (1994) 4673-4680.
  • 14. Carver, T. and Bleasby, A. The design of Jemboss: a graphical user interface to EMBOSS. Bioinformatics 19 (2003) 1837-1843.
  • 15. Galtier, N., Gouy, M. and Gautier, C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 12 (1996) 543-548.
  • 16. Garavelli, J.S., Hou, Z., Pattabiraman, N. and Stephens, R.M. The RESID Database of protein structure modifications and the NRL-3D Sequence-Structure Database. Nucleic Acids Res. 29 (2001) 199-201.
  • 17. Rost, B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 266 (1996) 525-539.
  • 18. Claros, M.G. and von Heijne, G. TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. Biosci. 10 (1994) 685-686.
  • 19. Jones, D.T., Taylor, W.R. and Thornton, J.M. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33 (1994) 3038-3049.
  • 20. Cuff, J.A., Clamp, M.E., Siddiqui, A.S., Finlay, M. and Barton, G.J. JPred: a consensus secondary structure prediction server. Bioinformatics 14 (1998) 892-893.
  • 21. McGuffin, L.J., Bryson, K. and Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics 16_(2000) 404-405.
  • 22. Ward, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F and Jones, D.T. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337 (2004) 635-645.
  • 23. Jones, D.T., Tress, M., Bryson, K. and Hadley, C. Successful recognition of protein folds using threading methods biased by sequence similarity and predicted secondary structure. Proteins Suppl. 3 (1992) 104-111.
  • 24. Edwards, Y.J.K. and Perkins, S.J. Assessment of protein fold predictions from sequence information: the predicted alpha/beta doubly wound fold of the von Willebrand factor type A domain is similar to its crystal structure. J. Mol. Biol. 260 (1996) 277-285.
  • 25. Olszewski .KA., Yan, L. and Edwards, D.J. SeqFold - fully automated fold recognition and modeling software - validation and application. Theor. Chem. Acc. 11 (1999) 57.
  • 26. Bowie, J.U., Lüthy, R. and Eisenberg, D. A method to identify protein sequences that fold into a known three dimensional structure. Science 253 (1991) 164-170.
  • 27. Kitson, D.H., Bradretdinov, A., Zhu, Z-Y., Velikanov, M., Edwards, D.J., Olszewski, K., Szalma, S. and Yan, L. Functional annotation of proteomic sequences based on consensus of sequence and structural analysis. Brief. Bioinform. 3 (2002) 32-44.
  • 28. Bujnicki, J.M., Elofsson, A., Fischer, D. and Rychlewski, L. Structure prediction meta server. Bioinformatics 8 (2001) 750-751.
  • 29. Bork, P., Doerks, T., Springer, T.A. and Snel, B. Domains in plexins: links to integrins and transcription factors. Trends Biochem. Sci. 24 (1999) 261-263.
  • 30. Sonnhammer, E.L., Eddy, S.R., Birney, E., Bateman, A., and Durbin, R. Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res. 26 (1998) 320-322.
  • 31. Hofman, K. and Stoffel, W. TMBASE - A database of membrane spanning protein segments. Biol. Chem. 374 (1993) 166.
  • 32. Cserzo, M., Bernassau, J.M., Simon, I. and Maigret, B. New alignment strategy for transmembrane proteins. J. Mol. Biol. 243 (1994) 388-396.
  • 33. Murvai, J., Vlahovicek, K. and Pongor, S. A simple probabilistic scoring method for protein domain identification. Bioinformatics 16 (2000) 11551156.
  • 34. Corpet, F., Gouzy, J. and Kahn, D. The ProDom database of protein domain families. Nucleic Acids Res. 26 (1998) 323-326.
  • 35. Henikoff, J.G., Greene, E.A., Pietrokovski, S. and Henikoff, S. Increased coverage of protein families with the blocks database servers. Nucleic Acids Res. 28 (2000) 228-230.
  • 36. Attwood, T.K., Avison, H,. Beck, M.E., Bewley, M., Bleasby, A.J., Brewster, F., Cooper, P., Degtyarenko, K., Geddes, A.J., Flower, D.R., Kelly, M.P., Lott, S., Measures, K.M., Parry-Smith, D.J., Perkins, D.N., Scordis, P., Scott, D. and Worledge, C. The PRINTS database of protein fingerprints: a novel information resource for computational molecular biology. J. Chem. Inf. Comput. Sci. 37 (1997) 417-424.
  • 37. Sigrist, C.J., Cerutti, L., Hulo, N., Gattiker, A., Falquet, L., Pagni, M., Bairoch, A. and Bucher, P. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief. Bioinform. 3 (2002) 265-274.
  • 38. Muren, E., Oyen, M., Barmark, G. and Ronne, H. Identification of yeast deletion strains that are hypersensitive to brefeldin A or monensin, two drugs that affect intracellular transport. Yeast 18 (2001) 163-172.
  • 39. Bonangelino, C.J., Chavez, E.M. and Bonifacino, J.S. Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol. Biol. Cell. 13 (2002) 2486-2501.
  • 40. Meiling-Wesse, K., Barth, H., Voss, C., Barmark, G., Muren, E., Ronne, H. and Thumm, M. Yeast Mon1p/Aut12p functions in vacuolar fusion of autophagosomes and cvt-vesicles. FEBS Lett. 530 (2002) 174-180.
  • 41. Wang, C.W., Stromhaug P.E., Shima, J. and Klionsky, D.J. The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways. J. Biol. Chem. 277 (2002) 47917-47927.
  • 42. Dong, S., Dong, C., Liu, L., Che, Y., Sun, M., Hu, F., Li, J. and Li, Q. Identification of a novel human sand family protein in human fibroblasts induced by herpes simplex virus 1 binding. Acta. Virol. 47 (2003) 27-32.
  • 43. Raftery, M.J., Behrens, C.K., Muller, A., Krammer, P.H., Walczak, H. and Schonrich, G. Herpes simplex virus type 1 infection of activated cytotoxic T cells: Induction of fratricide as a mechanism of viral immune evasion. J. Exp. Med. 190 (1999) 1103-1114.
  • 44. Mondal, B., Sreenivasa, B.P., Dhar, P., Singh, R.P. and Bandyopadhyay, S.K. Apoptosis induced by peste des petits ruminants virus in goat peripheral blood mononuclear cells. Virus Res. 73 (2001) 113-119.
  • 45. Halford, W.P. and Carr, D.J. Subversion of intracellular signal transduction by herpes simplex virus type 1. Adv. Neuroimmunol. 5 (1995) 327-334.
  • 46. McLean, T.I. and Bachenheimer, S.L. Activation of cJUN N-terminal kinase by herpes simplex virus type 1 enhances viral replication. J. Virol. 73 (1999) 8415-8426.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-d4a40df5-1f21-4dc5-b5cd-7bfc64a178a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.